ARTICLE
Influence of air vent geometry in brake rotors on the performance of a car braking system
 
More details
Hide details
1
Department of Theoretical and Applied Mechanics, Silesian University of Technology, Gliwice, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2025-06-24
 
 
Final revision date: 2025-11-06
 
 
Acceptance date: 2025-11-06
 
 
Online publication date: 2026-01-20
 
 
Corresponding author
Mateusz Kita   

Department of Theoretical and Applied Mechanics, Silesian University of Technology, Gliwice, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The growing mass of modern vehicles increases kinetic energy and thermal stress on braking systems, elevating rotor temperatures and the risk of brake fade. In ventilated disc brakes, heat dissipation depends strongly on the geometry of internal vents. This study uses finite element method (FEM) simulations to examine the thermal behaviour of passenger-car ventilated rotors with different vent designs, including motorsport-inspired configurations, under high thermal loading. While previous studies have examined heat generation and dissipation in disc brakes, direct comparative FE analyses of vent geometries remain limited. The results demonstrate that vent shape significantly affects cooling performance during and following intense braking.
REFERENCES (22)
1.
Agrawal, V.K., Patil, L.N., Chavan, K.V., & Nimbalkar, U.D. (2024). A computational analysis of heat transfer in solid and vented disc brakes: CFD simulation and thermal performance assessment. Multiscale and Multidisciplinary Modeling, Experiments and Design, 7 (5), 4735–4749. https://doi.org/10.1007/s41939....
 
2.
Al Riyami, S.S., Chala, G.T., Bernard, A., & Al Maawali, K. (2023). A case study on thermal analysis of the disc brake used for heavy-duty cars. PLATFORM - A Journal of Engineering, 7 (2), 21–32. https://files01.core.ac.uk/dow...
 
3.
Andrzejewski, R. (2005). Models of drive wheel traction. Friction models (in Polish). Archiwum Motoryzacji, 1, 59–76.
 
4.
Belhocine, A., & Bouchetara, M. (2013). Investigation of temperature and thermal stress in ventilated disc brake based on 3D thermomechanical coupling model. Ain Shams Engineering Journal, 4 (3), 475–483. https://doi.org/10.1016/j.asej...
 
5.
Bellini, C., Di Cocco, V., Iacoviello, D., & Iacoviello, F. (2024). Temperature influence on brake pad friction coefficient modelisation. Materials, 17 (1), Article 189. https://doi.org/10.3390/ma1701....
 
6.
Bentz, D.P., & Prasad, K.R. (2007). Thermal performance of fire resistive materials. I. Characterization with respect to thermal performance models. National Institute of Standards and Technology. https://www.researchgate.net/p....
 
7.
Cristescu, A.C., & Ilie, F. (2023). Influence of travel speed, time, and distance of braking on the efficiency of a car’s braking system. Preprints, https://doi.org/10.20944/prepr....
 
8.
De Freitas, T.V.A., Rodrigues, R.N., Costa, C.A.S., Bezerra, R.A., Gonçalves, V.V., Maciel, M.H.C., & Queiroz, D.M. (2023). Influence of design parameters in the brake squeal in electric cars. Revista Brasileira de Física Tecnológica Aplicada, 10 (2), 39–53. https://revistas.utfpr.edu.br/....
 
9.
Dinesh Kumar, P.K., & Darius Gnanaraj, S. (2023). Aluminium-silicon based metal matrix composites for brake rotor applications: a review. Engineering Research Express, 5 (2), Article 022002. https://doi.org/10.1088/2631-8....
 
10.
Gao, C.H., & Lin, X.Z. (2002). Transient temperature field analysis of a brake in a non-axisymmetric three-dimensional model. Journal of Materials Processing Technology, 129 (1–3), 513–517. https://doi.org/10.1016/S0924-...
 
11.
Kalamegam, P., Chong, P.L., Faraji, F., Moey, L.K., Manan, M.S.A., & Roy, S. (2025). A comparative study of thermo-mechanical performance of brake rotor discs using finite element analysis. International Journal on Interactive Design and Manufacturing, 19 (7), 5383–5395. https://doi.org/10.1007/s12008....
 
12.
Kim, B.G., Rempe, J.L., Knudson, D.L., Condie, K.G., & Sencer, B.H. (2012). In-situ creep testing capability for the advanced test reactor. Nuclear Technology, 179 (3), 417–428. https://doi.org/10.13182/NT12-....
 
13.
López-Flores, J.-G., Cordero-Guridi, J. de J., Ovando-Cuevas, E.R., & Yescas-Ávila, E.A. (2024). Thermal-structural numerical analysis of the brake and disc system of a Formula SAE 2024 type vehicle. Journal-Mathematical and Quantitative Methods, 8 (14), Article e30814113. https://doi.org/10.35429/JMQM.....
 
14.
Nadig, D.S., Shivakumar, P., Anoop, S., Chinmay, K., Divine, P.V., & Harsha, H.P. (2017). Effects of cryogenic treatment on the wear properties of brake discs. IOP Conference Series: Materials Science and Engineering, 171, Article 012152. https://doi.org/10.1088/1757-8....
 
15.
Najmi, H., Kumar, N., Himanshu, Singh, A., Singh, R., & Kumar, S. (2021). Thermal analysis of brake disc of an automobile. IOP Conference Series: Materials Science and Engineering, 1116, Article 012146. https://doi.org/10.1088/1757-8....
 
16.
Piasecka-Belkhayat, A., & Kowalski, P. (2018). Numerical modeling of heat transfer in biological tissue domain using the fuzzy finite difference method. In R. Owen, R. de Borst, J. Reese, & C. Pearce (Eds.), Proceedings of the 6th. European Conference on Computational Mechanics (Solids, Structures and Coupled Problems): ECCM 6; 7th. European Conference on Computational Fluid Dynamics: ECFD 7 (pp. 1475–1484). International Center for Numerical Methods in Engineering (CIMNE). http://congress.cimne.com/eccm....
 
17.
Sainath, A., Dehadray, P.M., Bharath, P., & Rao, L.B. (2021). The thermal and stress analysis of disc brake. IOP Conference Series: Materials Science and Engineering, 1128, Article 012015. https://doi.org/10.1088/1757-8....
 
18.
Skonieczna, D., & Ptaszny, J. (2017). Strengh analysis of the stabilizer bar link (in Polish). In G. Dziatkiewicz, J. Ptaszny, & M. Dziewoński (Eds.), Metody komputerowe – 2017: Studencka konferencja naukowa, Gliwice, maj 2017 (pp. 65–68). Silesian University of Technology.
 
19.
Stefanelli, A., Aprea, M., Carbone, F., Romagnuolo, F., Caresia, P., & Suero, R. (2024). Integrated thermomechanical analysis of tires and brakes for vehicle dynamics and safety. Vehicles, 6 (3), 1637–1647. https://doi.org/10.3390/vehicl....
 
20.
Szymczak, T., Kowalewski, Z.L., & Brodecki, A. (2025). Durability tests for the automotive industry. Journal of Theoretical and Applied Mechanics, 63 (3), 461–469. https://doi.org/10.15632/jtam-....
 
21.
Talati, F., & Jalalifar, S. (2009). Analysis of heat conduction in a disk brake system. Heat and Mass Transfer, 45 (8), 1047–1059. https://doi.org/10.1007/s00231...
 
22.
Zhang, Z., & Zheng, S. (2024). Characterization of temperature rise of carbon ceramic brake disc. Journal of Physics: Conference Series, 2827, Article 012011. https://doi.org/10.1088/1742-6....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top