The objective of the paper is to demonstrate the potential of the localizing gradient dam-
age model in size effect simulations. Three different gradient activity functions for variable
internal length scale are considered. Numerical simulations for an unnotched beam under
three-point bending are referred to the experiment performed by Gr´egoire et al. (2013).
A confrontation with the conventional gradient damage model as well as mesh sensitivity
studies are also presented. It is proved that the localizing gradient damage model with differ-
ent variants of the gradient activity function can reproduce the size effect quite reasonably.
REFERENCES(26)
1.
Barbat G.B., Cervera M., Chiumenti M., Espinoza E., 2020, Structural size effect: Experimental, theoretical and accurate computational assessment, Engineering Structures, 213, 110555.
Bažant Z.P., Jirásek M., 2002, Nonlocal integral formulations of plasticity and damage: Survey of progress, Journal of Engineering Mechanics – ASCE, 128, 11, 1119-1149.
Bažant Z.P., Le J.-L., 2017, Probabilistic Mechanics of Quasibrittle Structures. Strength, Life-time, and Size Effects, Cambridge University Press, Cambridge.
Borden M.J., 2012, Isogeometric analysis of phase-field models for dynamic brittle and ductile fracture, Ph.D. Thesis, The University of Texas at Austin, Austin, Texas.
de Borst R., Verhoosel C.V., 2016, Gradient damage vs. phase-field approaches for fracture: Similarities and differences, Computer Methods in Applied Mechanics and Engineering, 312, 78-94.
García-Álvarez V.O., Gettu R., Carol I., 2012, Analysis of mixed-mode fracture in concrete using interface elements and a cohesive crack model, Sadhana, 37, 1, 187-205.
Geers M.G.D., 1997, Experimental analysis and computational modelling of damage and fracture, Ph.D. Thesis, Eindhoven University of Technology, Eindhoven.
Grégoire D., Rojas-Solano L.B., Pijaudier-Cabot G., 2013, Failure and size effect for notched and unnotched concrete beams, International Journal for Numerical and Analytical Methods in Geomechanics, 37, 10, 1434-1452.
Peerlings R.H.J., de Borst R., Brekelmans W.A.M., de Vree J.H.P., 1996, Gradient enhanced damage for quasi-brittle materials, International Journal for Numerical Methods in Engineering, 39, 19, 3391-3403.
Poh L.H., Sun G., 2017, Localizing gradient damage model with decreasing interaction, International Journal for Numerical Methods in Engineering, 110, 6, 503-522.
Saroukhani S., Vafadari R., Simone A., 2013, A simplified implementation of a gradient-enhanced damage model with transient length scale effects, Computational Mechanics, 51, 6, 899-909.
Zhao D., Yin B., Tarachandani S., Kaliske M., 2023, A modified cap plasticity description coupled with a localizing gradient-enahnced approach for concrete failure modeling, Computational Mechanics, 72, 787-801.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.