ARTICLE
Evaluation of viscosity and rheological characteristics of corn oil combined with graphene nanoplatelets for machining lubrication
 
More details
Hide details
1
Faculty of Engineering, Universitas Brawijaya, Malang, East Java, Indonesia
 
 
Submission date: 2025-08-08
 
 
Final revision date: 2025-10-17
 
 
Acceptance date: 2025-11-21
 
 
Online publication date: 2026-02-13
 
 
Corresponding author
Anindito Purnowidodo   

Mechanical Engineering, Universitas Brawijaya, Malang, Indonesia
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study aims to analyze the thermal conductivity, dynamic viscosity and rheology of corn oil (CO) with added graphene nanoplatelets (GNPs). The addition of GNPs to CO uses variations of Φ = 0.10%, Φ = 0.15 %, Φ = 0.20 %, Φ = 0.25 %, and Φ = 0.30 %. The highest thermal conductivity results were produced at a GNP percentage of Φ = 0.30% with a value of 0.1620 W·m−1 ·K−1. The viscosity results show that the highest dynamic viscosity value is produced at GNPs Φ = 0.20% at all temperatures. The rheology results show that the stable percentage 0.10% and 0.20% approaches Newtonian properties.
REFERENCES (25)
1.
Adebowale, A.-R.A., & Sanni, L.O. (2013). Effects of solid content and temperature on viscosity of tapioca meal. Journal of Food Science and Technology, 50 (3), 573–578. https://doi.org/10.1007/s13197....
 
2.
Ahmed, J., & Ramaswamy, H.S. (2003). Effect of high-hydrostatic pressure and temperature on rheological characteristics of glycomacropeptide. Journal of Dairy Science, 86 (5), 1535–1540. https://doi.org/10.3168/jds.S0....
 
3.
Arsene, B., Gheorghe, C., Sarbu, F.A., Barbu, M., Cioca, L.-I., & Calefariu, G. (2021). MQL-assisted hard turning of AISI D2 steel with corn oil: Analysis of surface roughness, tool wear, and manufacturing costs. Metals, 11 (12), Article 2058. https://doi.org/10.3390/met111....
 
4.
Bertolini, R., Ghiotti, A., & Bruschi, S. (2021). Graphene nanoplatelets as additives to MQL for improving tool life in machining Inconel 718 alloy. Wear, 476, Article 203656. https://doi.org/10.1016/j.wear....
 
5.
Caglayan, M.O. (2021). Rheological and tribological characterization of novel modified graphene/oil-based nanofluids using force microscopy. Microscopy Research & Technique, 84 (4), 814–827. https://doi.org/10.1002/jemt.2....
 
6.
Chehadeh, D., Ma, X., & Al Bazzaz, H. (2023). Recent progress in hydrotreating kinetics and modeling of heavy oil and residue: A review. Fuel, 334 (1), Article 126404. https://doi.org/10.1016/j.fuel....
 
7.
Da Silva, R.B., Vieira, J.M., Cardoso, R.N., Carvalho, H.C., Costa, E.S., Machado, A.R., & De Ávila, R.F. (2011). Tool wear analysis in milling of medium carbon steel with coated cemented carbide inserts using different machining lubrication/cooling systems. Wear, 271 (9–10), 2459–2465. https://doi.org/10.1016/j.wear....
 
8.
Debnath, S., Reddy, M.M., & Yi, Q.S. (2014). Environmental friendly cutting fluids and cooling techniques in machining: A review. Journal of Cleaner Production, 83, 33–47. https://doi.org/10.1016/j.jcle....
 
9.
Ebrahim, S.A., Pradeep, E., Mukherjee, S., & Ali, N. (2023). Rheological behavior of dilute graphenewater nanofluids using various surfactants: An experimental evaluation. Journal of Molecular Liquids, 370, Article 120987. https://doi.org/10.1016/j.moll....
 
10.
Gómez-Merino, A.I., Jiménez-Galea, J.J., Rubio-Hernández, F.J., & Santos-Ráez, I.M. (2022). Experimental assessment of thermal and rheological properties of coconut oil-silica as green additives in drilling performance based on minimum quantity of cutting fluids. Journal of Cleaner Production, 368, Article 133104. https://doi.org/10.1016/j.jcle....
 
11.
Gunjal, S.U., & Patil, N.G. (2018). Experimental investigations into turning of hardened AISI 4340 steel using vegetable based cutting fluids under minimum quantity lubrication. Procedia Manufacturing, 20, 18–23. https://doi.org/10.1016/j.prom....
 
12.
Halelfadl, S., Estellé, P., Aladag, B., Doner, N., & Maré, T. (2013). Viscosity of carbon nanotubes water-based nanofluids: Influence of concentration and temperature. International Journal of Thermal Sciences, 71, 111–117. https://doi.org/10.1016/j.ijth....
 
13.
Jang, J.-u., Nam, H.E., So, S.O., Lee, H., Kim, G.S., Kim, S.Y., & Kim, S.H. (2022). Thermal percolation behavior in thermal conductivity of polymer nanocomposite with lateral size of graphene nanoplatelet. Polymers, 14 (2), Article 323. https://doi.org/10.3390/polym1....
 
14.
Kim, S.Y., Noh, Y.J., & Yu, J. (2015). Thermal conductivity of graphene nanoplatelets filled composites fabricated by solvent-free processing for the excellent filler dispersion and a theoretical approach for the composites containing the geometrized fillers. Composites Part A: Applied Science and Manufacturing, 69, 219–225. https://doi.org/10.1016/j.comp....
 
15.
La Mantia, F.P., Titone, V., Milazzo, A., Ceraulo, M., & Botta, L. (2021). Morphology, rheological and mechanical properties of isotropic and anisotropic PP/rPET/GnP nanocomposite samples. Nanomaterials, 11 (11), Article 3058. https://doi.org/10.3390/nano11....
 
16.
Manikandan, S., & Nanthakumar, A.J.D. (2024). Development of a predictive model for thermal conductivity in graphene nanoplatelets-infused damper oil using ANN/RSM. Thermal Science, 28 (5B), 4235–4247. https://doi.org/10.2298/TSCI23...
 
17.
Manikanta, J.E., Naga Raju, B., & Satankar, R.K. (2024). Development and characterization of novel green cutting fluids with nano-additives. Periodica Polytechnica Mechanical Engineering, 68 (4), 304–311. https://doi.org/10.3311/PPme.2....
 
18.
Müller, M., Stahl, L., Arafat, R., Madanchi, N., & Herrmann, C. (2021). A case study on the observability of cutting fluid flow and the associated contact mechanics in scaled rough surfaces. SN Applied Sciences, 3 (5), Article 570. https://doi.org/10.1007/s42452....
 
19.
Park, K.-H., Ewald, B. & Kwon, P.Y. (2011). Effect of nano-enhanced lubricant in minimum quantity lubrication balling milling. Journal of Tribology, 133 (3), Article 031803. https://doi.org/10.1115/1.4004....
 
20.
Ramón-Raygoza, E.D., Rivera-Solorio, C.I., Giménez-Torres, E., Maldonado-Cortés, D., Cardenas-Alemán, E., & Cué-Sampedro, R. (2016). Development of nanolubricant based on impregnated multilayer graphene for automotive applications: Analysis of tribological properties. Powder Technology, 302, 363–371. https://doi.org/10.1016/j.powt....
 
21.
Samuel, J., Rafiee, J., Dhiman, P., Yu, Z.-Z., & Koratkar, N. (2011). Graphene colloidal suspensions as high performance semi-synthetic metal-working fluids. The Journal of Physical Chemistry C, 115 (8), 3410–3415. https://doi.org/10.1021/jp1108....
 
22.
Uysal, A. (2017). An experimental study on cutting temperature and burr in milling of ferritic stainless steel under MQL using nano graphene reinforced cutting fluid. Advanced Materials Proceedings, 2 (9), 560–563. https://doi.org/10.5185/amp.20....
 
23.
Vora, V., Sharma, R.K., & Bharambe, D.P. (2023). Investigation of rheological and thermal conductivity properties of castor oil nanofluids containing graphene nanoplatelets. International Journal of Thermophysics, 44 (10), Article 155. https://doi.org/10.1007/s10765....
 
24.
Wang, B., Yang, Q., Deng, J., Hou, N., Wang, X., & Wang, M. (2022). Effect of graphene nanoparticles and sulfurized additives to MQL for the machining of Ti-6Al-4 V. The International Journal of Advanced Manufacturing Technology, 119 (5-6), 2911–2921. https://doi.org/10.1007/s00170....
 
25.
Yahya, M.N., Mohd Norddin, M.N.A., Ismail, I., Rasol, A.A.A., Risal, A.R., Yakasai, F., Oseh, J.O., Ngouangna, E.N., Younas, R., Ridzuan, N., Mahat, S.Q.A., & Agi, A. (2024). Graphene nanoplatelet surface modification for rheological properties enhancement in drilling fluid operations: A review. Arabian Journal for Science and Engineering, 49 (6), 7751–7781. https://doi.org/10.1007/s13369....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top