Beata Potrzeszcz-Sut
Faculty of Civil Engineering and Architecture, Kielce University of Technology, al. Tysiąclecia Państwa Polskiego 7, 25-314, Kielce, Poland
Journal of Theoretical and Applied Mechanics 2020;58(2):469-482
The paper presents an example of reliability analysis of shell structures susceptible to stability
loss from the condition of node snapping. In the reliability analysis of the structure,
uncertain parameters of the task are represented by uncorrelated random variables. The
approach used in the paper is an extension of the idea, which assumes the use of Neural
Networks (NNs) in Monte Carlo (MC) simulations to analyze the reliability of the structure.
For this purpose, it was necessary to build a simple hybrid system formed with the
two independent sequentially working Finite Element Method (FEM) and Neural Networks
applications.
REFERENCES(30)
1.
Carpentier A., Munos R., 2012, Adaptive stratified sampling for Monte-Carlo integration of differentiable functions, Proceedings of the 25th International Conference on Neural Information Processing Systems, 1.
Deng J., Gu D., Li X., Yue Z.Q., 2005, Structural reliability analysis for implicit performance functions using neural networks. Structural Safety, 27, 25–48, DOI: 10.1016/j.strusafe.2004.03.004.
Dudzik A., 2016, The effectiveness of the FORM method compared to other probabilistic methods in the analysis of bar structures, PHD Disertation (in Polish), Politechnika Świętokrzyska, Kielce.
Dudzik A., Potrzeszcz-Sut B., 2019, The structural reliability analysis using explicit neural state functions, MATEC Web of Conferences, 262, 1, DOI: 10.1051/matecconf/201926210002.
Gwóźdź M., Machowski A., 2011, Selected Tests and Calculations of Building Constructions by Probabilistic Methods (in Polish),Wydawnictwo Politechniki Krakowskiej im. Tadeusza Kościuszki, Krakow.
Hagan M., Menhaj M., 1994, Training feedforward networks with the Marquardt algorithm, IEEE Transactions on Neural Networks, 5, 6, 989-993, DOI: 10.1109/72.329697.
Haykin S., 1999, Neural Networks – A Comprehensive Foundation, Prentice Hall, New York 10. JCSS, 1981, Joint committee on structural safety, general principles on reliability for structural design, IABSE.
Jelic A., Baitsch M., Hartmann D., Spitzlei K., Ballnus D., 2004, Distributed computing of failure probabilities for structures in civil engineering, X International Conference on Computing in Civil and Building Engineering, Weimar.
Kaliszuk J., 2011, Hybrid Monte Carlo method in the reliability analysis of structures, Computer Assisted Mechanics and Engineering Sciences, 18, 205-216.
Kaliszuk J., Waszczyszyn Z., 2006, Reliability analysis of a steel girder by the hybrid Monte Carlo method. Progress in steel, composite and aluminium structures, Proceedings of the XIth International Conference on Metal Structures, Rzeszow, 843-847.
Kunstmann H., Kinzelbach W., Siegfried T., 2002, Conditional first-order second-moment method and its application to the quantification of uncertainty in groundwater modeling, Water Resources Reaserch, 38, 4-1035, 6.1-6.14.
Pabisek E., 2008, Hybrid Systems Integrating FEM and SSN in the Analysis of Selected Problems of Structural Mechanics and Materials (in Polish), Politechnika Krakowska, Krakow.
Pabisek E., Kaliszuk J., Waszczyszyn Z., 2004, Neural and finite element analysis of a plane steel frame reliability by the Classical Monte Carlo method, Artificial Intelligence and Soft Computing – ICAISC 2004, 7th International Conference, Zakopane, 1081-1086.
Papadopoulos V., Giovanis D., Lagaros N., Papadrakakis M., 2012, Accelerated subset simulation with neural networks for reliability analysis, Computer Methods in Applied Mechanics and Engineering, 223-224, 70-80, DOI: 10.1016/j.cma.2012.02.013.
Papadrakakis M., Papadopoulos V., Lagaros N., 1996, Structural reliability analysis of elastic-plastic structures using neural networks and Monte Carlo simulation, Computer Methods in Applied Mechanics and Engineering, 136, 145-163, DOI: 10.1016/0045-7825(96)01011-0.
PN-EN 1993-1-4:2007, Designing of steel structures – Part 1-4: General rules – Supplementary rules for stainless steel structure (in Polish), PKN, Warszawa.
Radoń U., 2012, Application of the FORM Method in the Analysis of Reliability of Truss Structures Susceptible Node Snapping (in Polish), Wydawnictwo Politechniki Świętokrzyskiej, Kielce.
Ramberg W., Osgood W., 1943, Description of stress-strain curves by three parameters, Technical Note No. 902, National Committee for Aeronautics, Washington DC.
Tsompanakis Y., Lagaros N., Stavroulaki G.E., 2005, Efficient neural network models for structural reliability analysis and identification problems, The Eighth International Conference on the Application of Artificial Intelligence to Civil, Structural and Environmental Engineering, DOI: 10.4203/ccp.82.41.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.