The non-linear stochastic dynamic behaviour of a high-rise vertical transportation system
modelled as a concentrated mass and a cable with finite bending stiffness is considered. The
slow time scale is defined and lateral cable displacements coupled with transverse motions
are expanded in terms of approximating functions. The excitation of the high-rise building
is assumed in the form of a narrow-band mean-square process equivalent to the harmonic
process. The equivalent linearization technique is used to replace the original non-linear
system with a linear approximation whose coefficients are determined from minimization of
the mean-square equation difference between both systems.
Kaczmarczyk S., Iwankiewicz R., 2017a, Gaussian and non-Gaussian stochastic response of slender continua with time-varying length deployed in tall structures, International Journal of Mechanical Sciences, 134, 500-510.
Kaczmarczyk S., Iwankiewicz R., 2017b, On the nonlinear deterministic and stochastic dynamics of a cable – mass system with time-varying length, 12th International Conference on Structural Safety and Reliability, Austria, 1205-1213.
Kaczmarczyk S., Iwankiewicz R., Terumichi Y., 2009, The dynamic behaviour of a nonstationary elevator compensating rope system under harmonic and stochastic excitations, Journal of Physics: Conference Series, 181, 12-47.
Kijewski-Correa T., Pirnia D., 2007, Dynamic behavior of tall buildings under wind: in-sights from full-scale monitoring, The Structural Design of Tall Special Buildings, 16, 471-486.
Kougioumtzoglou I.A., Fragkoulis V.C., Pantelous A.A., Pirotta A., 2017, Random vibration of linear and nonlinear structural systems with singular matrices: A frequency domain approach, Journal of Sound and Vibration, 404, 84-101.
Larsen J.W., Iwankiewicz R., Nielsen S.R.K., 2007, Probabilistic stochastic stability analysis of wind turbine wings by Monte Carlo simulations, Probabilistic Engineering Mechanics, 22, 181-193.
Roberts J.B., 1981, Response of non-linear mechanical systems to random excitations. Part II: Equivalent linearization and other methods, Shock and Vibration Digest, 13, 15-29.
Spanos P.D., Evangelatos G.I., 2010, Response of nonlinear system with restoring forces governed by fractional derivatives-time domain simulation and statistical linearization solution, Soil Dynamics and Earthquake Engineering, 30, 811-821.
Terumichi Y., Ohtsuka M.,Yoshizawa M., Fukawa Y., Tsujioka Y., 1995, Nonstationary vibrations of a string with time-varying length and a mass-spring system attached at the lower end, Nonlinear Dynamics, 12, 39-55.
Weber H., Iwankiewicz R., Kaczmarczyk R., 2019, Equivalent linearization technique in nonlinear stochastic dynamics of a cable-mass system with time-varying length, Archives of Mechanics, 71, 393-416.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.