ARTICLE
Mathematical modelling and simulation of delamination crack growth in glass fiber reinforced plastic (GFRP) composite laminates
 
 
More details
Hide details
1
University of Jeddah, Mechanical Engineering Department, Jeddah, Saudi Arabia
 
 
Submission date: 2017-04-13
 
 
Acceptance date: 2018-05-04
 
 
Publication date: 2019-01-20
 
 
Journal of Theoretical and Applied Mechanics 2019;57(1):17-26
 
KEYWORDS
ABSTRACT
Delamination crack growth is a major source of failure in composite laminates under static and fatigue loading conditions. In the present study, damage mechanics based failure models for both static and fatigue loadings are evaluated via UMAT subroutine to study the dela- mination crack growth phenomenon in Glass Fiber Reinforced Plastic (GFRP) composite laminates. A static local damage model proposed by Allix and Ladev`eze is modified to an non-local damage model in order to simulate the crack growth behavior due to static loading. Next, the same classical damage model is modified to simulate fatigue delamination crack growth. The finite element analysis results obtained by the proposed models are successfully compared with the available experimental data on the delamination crack growth for GFRP composite laminates.
REFERENCES (27)
1.
Alfano G., Crisfield M.A., 2001, Finite element interface models for the delamination analysis of laminated composites: mechanical and computational issue, International Journal for Numerical Methods in Engineering, 50, 1701-1736.
 
2.
Allix O., Ladevèze P., 1992, Interlaminar interface modelling for the prediction of delamination, Composite Structures, 22, 235-242.
 
3.
Allix O., Ladevèze P., 1996, Damage mechanics of interfacial media: basic aspects, identification and application to delamination, Studies in Applied Mechanics, 44, 167-188.
 
4.
Allix O., Ladevèze P., Corigliano A., 1995, Damage analysis of interlaminar fracture specimens, Composite Structures, 31, 61-74.
 
5.
Allix O., Ladevèze P., Deu J.F., L´evˆeque D., 2000, A mesomodel for localization and damage computation in laminates, Computer Methods in Applied Mechanics and Engineering, 183, 105-122.
 
6.
Allix O., Ladevèze P., Gornet L., Perret L., 1998, A computational damage mechanics approach for laminates: identification and comparison with experimental result, Studies in Applied Mechanics, 46, 481-500.
 
7.
Bažant Z.P., Pijaudier-Cabot G., 1988, Nonlocal continuum damage, localization instability and convergence, Journal of Applied Mechanics, 55, 287-293.
 
8.
Bažant Z.P., Pijaudier-Cabot G., 1989, Measurement of characteristic length of nonlocal continuum, Journal of Engineering Mechanics, 115, 755-767.
 
9.
Beer G., 1985, An isoparametric joint/interface element for finite element analysis, International Journal for Numerical Methods in Engineering, 21, 585-600.
 
10.
Borino G., Failla B. Parrinello F., 2007, Nonlocal elastic damage interface mechanical model, International Journal for Multiscale Computational Engineering, 5, 153-165.
 
11.
Chaboche J.L., Girard R., Levasseur P., 1997, On the interface debonding models, International Journal of Damage Mechanics, 6, 220-257.
 
12.
Corigliano A., 1993, Formulation, identification and use of interface models in the numerical analysis of composite delamination, International Journal Solids and Structures, 30, 2779-2811.
 
13.
Corigliano A., Allix O., 2000, Some aspects of interlaminar degradation in composites, Computer Methods in Applied Mechanics and Engineering, 185, 203-224.
 
14.
Davidson P., Waas A.M., 2012, Non-smooth Mode I fracture of fibre-reinforced composites: an experimental, numerical and analytical study, Philosophical Transactions of the Royal Society of London, Series A, 370, 1942-1965.
 
15.
Davies P., Cantwell W., Moulin C., Kausch, H.H., 1989, A study of delamination resistance of IM6/PEEK composites, Composites Science and Technology, 36, 153-166.
 
16.
Herakovich C.T., 1997, Mechanics of Fibrous Composites, 1st ed., John Wiley & Sons Ltd., New York, U.S.
 
17.
Ijaz H., Asad M., Gornet L., Alam S.Y., 2014, Prediction of delamination crack growth in carbon/fiber epoxy composite laminates using non-local interface damage model, Mechanics &Industry, 15, 293-300.
 
18.
Ijaz H., Khan M.A., Saleem W., Chaudry S.R., 2011, Numerical modeling and simulation of delamination crack growth in cf/epoxy composite laminates under cyclic loading using cohesive zone model, Advanced Materials Research, 326, 37-52.
 
19.
Ijaz H., Zain-ul-Abdein M., Saleem W., Asad M., Mabrouki T., 2016, A numerical approach on parametric sensitivity analysis for an aeronautic aluminium alloy turning process,Mechanics, 2, 149-155.
 
20.
Jirasek M., 1998, Nonlocal models for damage and fracture: comparison of approaches, International Journal of Solids and Structures, 35, 4133-4145.
 
21.
Marguet S., Rozycki P., Gornet L., 2007, A rate dependent constitutive model for carbon--fiber reinforced plastic woven fabric, Mechanics of Advanced Materials and Structures, 14, 619-631.
 
22.
Meng Q., Wang Z., 2014, Extended finite element method for power-law creep crack growth, Engineering Fracture Mechanics, 127, 148-160.
 
23.
Peerlings R.H.J., Geers M.G.D., De Borst R., Brekelmans W.A.M., 2001, A critical comparison of nonlocal and gradient enhanced softening continua, International Journal of Solids Structures, 38, 7723-7746.
 
24.
Peng L., Xu J., 2013, Fatigue delamination growth of composite laminates with fiber bridging: Theory and simulation, [In:] Proceeding of 13th International Conference on Fracture (ICF13), Yu S. and Feng X.-Q. (Edit.), Beijing, China, 16-21.
 
25.
Verpeaux p., Charras T., Millard A., 1998, Castem 2000: Une Approche Moderne du Calcul des Structures, Fouet J.M., Ladev`eze P., Ohayon R. (Edit.), 227-261.
 
26.
Williams J.G., 1988, On the calculation of energy release rates for cracked laminates, International Journal of Fracture, 36, 101-119.
 
27.
Yao L., 2015, Mode I fatigue delamination growth in composite laminates with fibre bridging, PhD Dissertation, Technische Universiteit Delft, Germany.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top