ARTICLE
Estimating equibiaxial stress-strain relation based on non-homogeneous biaxial measurement
 
 
More details
Hide details
1
Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111 Budapest, Hungary
 
 
Submission date: 2024-12-03
 
 
Acceptance date: 2025-02-11
 
 
Online publication date: 2025-05-17
 
 
Corresponding author
Attila Kossa   

Department of Applied Mechanics, Budapest University of Technology and Economics, Muegyetem rkp. 3., 1111, Budapest, Hungary
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study investigates the influence of geometry on stress distributions in equibiaxial testing of rubber-like materials using hyperelastic models. Two geometries were examined, characterized by parameters specifying configurations like corner angles and normalized radii. A finite element approach was employed to simulate deformation under equibiaxial stretching, revealing non-homogeneous stress states. Apparent stress ratios were derived to evaluate geometry-induced deviations from purely equibiaxial stress-strain behavior. Results highlight the significance of geometrical factors in stress distributions. The findings offer insights for optimizing specimen designs for equibiaxial material characterization and improving the accuracy of extracted material properties.
REFERENCES (25)
1.
Avanzini, A., & Battini, D. (2016). Integrated experimental and numerical comparison of different approaches for planar biaxial testing of a hyperelastic material. Advances in Materials Science and Engineering, 2016 (1), Article 6014129. https://doi.org/10.1155/2016/6....
 
2.
Bertin, M., Hild, F., Roux, S., Mathieu, F., Leclerc, H., & Aimedieu, P. (2015). Integrated digital image correlation applied to elasto-plastic identification in a biaxial experiment. Journal of Strain Analysis for Engineering Design, 51 (2), 118–131. https://doi.org/10.1177/030932....
 
3.
Chen, S., Cai, D., Jiang, H., Li, G., & Cui, J. (2023). A new measurement technology for forming limit in aluminum alloy under biaxial dynamic loading. Journal of Materials Processing Technology, 317, Article 117963. https://doi.org/10.1016/j.jmat....
 
4.
Chen, Z., Scheffer, T., Seibert, H., & Diebels, S. (2013). Macroindentation of a soft polymer: Identification of hyperelasticity and validation by uni/biaxial tensile tests. Mechanics of Materials, 64, 111–127. https://doi.org/10.1016/j.mech....
 
5.
Dassault Systèmes, 2022, Abaqus version 2022.
 
6.
Hamdoun, A., & Mahnken, R. (2024). Uniaxial and biaxial experimental investigation of glassy polymers. Polymer, 299, Article 126981. https://doi.org/10.1016/j.poly....
 
7.
Hartmann, S., Gilbert, R.R., & Sguazzo, C. (2018). Basic studies in biaxial tensile tests. GAMM – Mitteilungen, 41 (1), Article e201800004. https://doi.org/10.1002/gamm.2....
 
8.
Holzapfel, G.A. (2010). Nonlinear solid mechanics: A continuum approach for engineering. Wiley.
 
9.
Jiang, M., Dai, J., Dong, G., & Wang, Z. (2022). A comparative study of invariant-based hyperelastic models for silicone elastomers under biaxial deformation with the virtual fields method. Journal of the Mechanical Behavior of Biomedical Materials, 136, Article 105522. https://doi.org/10.1016/j.jmbb....
 
10.
Kuwabara, T., Ikeda, S., & Kuroda, K. (1998). Measurement and analysis of differential work hardening in cold-rolled steel sheet under biaxial tension. Journal of Materials Processing Technology, 80–81, 517–523. https://doi.org/10.1016/S0924-....
 
11.
Labus, K.M. & Puttlitz, C.M. (2016). An anisotropic hyperelastic constitutive model of brain white matter in biaxial tension and structural–mechanical relationships. Journal of the Mechanical Behavior of Biomedical Materials, 62, 195–208. https://doi.org/10.1016/j.jmbb....
 
12.
Lamkanfi, E., Van Paepegem, W., & Degrieck, J. (2015). Shape optimization of a cruciform geometry for biaxial testing of polymers. Polymer Testing, 41, 7–16. https://doi.org/10.1016/j.poly....
 
13.
Makinde, A., Thibodeau, L., & Neale, K.W. (1992). Development of an apparatus for biaxial testing using cruciform specimens. Experimental Mechanics, 32 (2), 138–144. https://doi.org/10.1007/BF0232....
 
14.
Marano, C., Calabrò, R., & Rink, M. (2010). Effect of molecular orientation on the fracture behavior of carbon black-filled natural rubber compounds. Journal of Polymer Science. Part B: Polymer Physics, 48 (13), 1509–1515. https://doi.org/10.1002/polb.2....
 
15.
Morris, K., Rosenkranz, A., Seibert, H., Ringel, L., Diebels, S., & Talke, F.E. (2020). Uniaxial and biaxial testing of 3D printed hyperelastic photopolymers. Journal of Applied Polymer Science, 137 (8), Article 48400. https://doi.org/10.1002/app.48....
 
16.
Oliveira, M.G., Thuillier, S., & Andrade-Campos, A. (2021). Evaluation of heterogeneous mechanical tests for model calibration of sheet metals. The Journal of Strain Analysis for Engineering Design, 57 (3), 208–224. https://doi.org/10.1177/030932....
 
17.
Palacios-Pineda, L., Perales-Martínez, I., Moreno-Guerra, M., & Elías-Zúñiga, A. (2017). An optimum specimen geometry for equibiaxial experimental tests of reinforced magnetorheological elastomers with iron micro- and nanoparticles. Nanomaterials, 7 (9), Article 254. https://doi.org/10.3390/nano70....
 
18.
Putra, K.B., Tian, X., Plott, J., & Shih, A. (2020). Biaxial test and hyperelastic material models of silicone elastomer fabricated by extrusion-based additive manufacturing for wearable biomedical devices. Journal of the Mechanical Behavior of Biomedical Materials, 107, Article 103733. https://doi.org/10.1016/j.jmbb....
 
19.
Ranjan, R., Murthy, H., Bhowmik, D., & Sadavarte, V.S. (2023). Behaviour of composite solid propellant under biaxial tensile loading. Polymer Testing, 124, Article 108054. https://doi.org/10.1016/j.poly....
 
20.
Seibert, H., Scheffer, T., & Diebels, S. (2014). Biaxial testing of elastomers – experimental setup, measurement and experimental optimisation of specimen’s shape. Technische Mechanik, 34 (2), 72–89. https://doi.org/10.24352/UB.OV....
 
21.
Silberstein, M.N., Pillai, P.V., & Boyce, M.C. (2011). Biaxial elastic–viscoplastic behavior of Nafion membranes. Polymer, 52 (2), 529–539. https://doi.org/10.1016/j.poly....
 
22.
Steinmann, P., Hossain, M., & Possart, G. (2012). Hyperelastic models for rubber-like materials: consistent tangent operators and suitability for Treloar’s data. Archive of Applied Mechanics, 82 (9), 1183–1217. https://doi.org/10.1007/s00419....
 
23.
Treloar, L.R.G. (1944). Stress-strain data for vulcanized rubber under various types of deformation. Rubber Chemistry and Technology, 17 (4), 813–825. https://doi.org/10.5254/1.3546....
 
24.
Vitucci, G. (2024). Biaxial extension of cruciform specimens: Embedding equilibrium into design and constitutive characterization. Experimental Mechanics, 64 (4), 539–550. https://doi.org/10.1007/s11340....
 
25.
Zhao, X., Berwick, Z.C., Krieger, J.F., Chen, H., Chambers, S., & Kassab, G.S. (2014). Novel design of cruciform specimens for planar biaxial testing of soft materials. Experimental Mechanics, 54 (3), 343–356. https://doi.org/10.1007/s11340....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top