Direct search methods for determining new designs of auxetic composite materials
 
More details
Hide details
1
National University for Science and Technology Politehnica Bucharest, Bucharest, Romania
 
2
Military Technical Academy “Ferdinand I”, Bucharest, Romania
 
3
Technical Sciences Academy of Romania, Bucharest, Romania
 
 
Submission date: 2024-12-09
 
 
Final revision date: 2025-01-31
 
 
Acceptance date: 2025-02-01
 
 
Online publication date: 2025-07-03
 
 
Corresponding author
Iulian Constantin Coropeţchi   

Center of Excellence in Self-Propelled Systems and Technologies for Defense and Security, Military Technical Academy "Ferdinand I", Bulevardul George Cosbuc, 050141, Bucharest, Romania
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Composite materials have gained significant attention in various engineering applications due to their ability to exhibit unique properties that can be tailored to meet specific design requirements. Among these, auxetic materials stand out for their counterintuitive behavior of expanding in all directions when stretched, as opposed to traditional materials which contract. This property makes auxetic materials promising candidates for applications such as impact protection, energy absorption, and advanced engineering structures. In this paper we investigate the application of direct search methods in determining new designs of auxetic composite materials.
REFERENCES (26)
1.
Arjomandi, M.A., Mousavi Asl, S.S., Mosallanezhad, B., & Hajiaghaei-Keshteli, M. (2024). A metaheuristic-based comparative structure for solving discrete space mechanical engineering problem. Annals of Operations Research. https://doi.org/10.1007/s10479....
 
2.
Bendsøe, M.P., & Sigmund, O. (2004). Topology optimization. Theory, methods and applications (2nd ed.). Berlin, Heidelberg: Springer-Verlag . https://doi.org/10.1007/978-3-....
 
3.
Casalotti, A., D’Annibale, F., & Rosi, G. (2020). Multi-scale design of an architected composite structure with optimized graded properties. Composite Structures, 252, Article 112608. https://doi.org/10.1016/j.comp....
 
4.
Clerc, M. (2006). Particle swarm optimization. ISTE. https://doi.org/10.1002/978047....
 
5.
Coropețchi, I.C., Vasile, A., Sorohan, Ș., Picu, C.R., & Constantinescu, D.M. (2022). Stiffness optimization through a modified greedy algorithm. Procedia Structural Integrity, 37, 755–762. https://doi.org/10.1016/j.pros....
 
6.
Engelbrecht, A.P. (2007). Computational intelligence: An introduction. John Wiley & Sons, Ltd. https://doi.org/10.1002/978047....
 
7.
Ghiasi, H., Fayazbakhsh, K., Pasini, D., & Lessard, L. (2010). Optimum stacking sequence design of composite materials Part II: Variable stiffness design. Composite Structures, 93 (1), 1–13. https://doi.org/10.1016/j.comp....
 
8.
Ghiasi, H., Pasini, D., & Lessard, L. (2009). Optimum stacking sequence design of composite materials Part I: Constant stiffness design. Composite Structures, 90 (1), 1–11. https://doi.org/10.1016/j.comp....
 
9.
Gu, G.X., Chen, C.T., & Buehler, M.J. (2018a). De novo composite design based on machine learning algorithm. Extreme Mechanics Letters, 18, 19–28. https://doi.org/10.1016/j.eml.....
 
10.
Gu, G.X., Chen, C.T., Richmond, D.J., & Buehler, M.J. (2018b). Bioinspired hierarchical composite design using machine learning: Simulation, additive manufacturing, and experiment. Materials Horizons, 5, 939–945. https://doi.org/10.1039/c8mh00....
 
11.
Harish, B., Eswara Sai Kumar, K., & Srinivasan, B. (2020). Topology optimization using convolutional neural network. In R.R. Salagame, P. Ramu, I. Narayanaswamy, D.K. Saxena (Eds.), Advances in Multidisciplinary Analysis and Optimization. Proceedings of the 2nd National Conference on Multidisciplinary Analysis and Optimization (pp. 301–307). Singapore: Springer. https://doi.org/10.1007/978-98....
 
12.
Kumar, S., Tan, S., Zheng, L., & Kochmann, D.M. (2020). Inverse-designed spinodoid metamaterials. npj Computational Materials, 6, Article 73. https://doi.org/10.1038/s41524....
 
13.
Li, T., Liu, F., & Wang, L. (2020). Enhancing indentation and impact resistance in auxetic composite materials. Composites Part B: Engineering, 198, Article 108229. https://doi.org/10.1016/j.comp....
 
14.
Luu, N.G., & Banh, T.T. (2023). A novel preconditioned conjugate gradient multigrid method for multi-material topology optimization. arXiv. https://doi.org/10.48550/arXiv....
 
15.
Pan, C., Han, Y., & Lu, J. (2020). Design and optimization of lattice structures: A review. Applied Sciences, 10(18), Article 6374. https://doi.org/10.3390/app101....
 
16.
Perez, R.E., & Behdinan, K. (2007). Particle swarm approach for structural design optimization. Computers and Structures, 85 (19–20), 1579–1588. https://doi.org/10.1016/j.comp....
 
17.
Ptochos, E., & Labeas, G. (2012). Elastic modulus and Poisson’s ratio determination of micro-lattice cellular structures by analytical, numerical and homogenisation methods. Journal of Sandwich Structures & Materials, 14 (5), 597–626. https://doi.org/10.1177/109963....
 
18.
Sait, S.M., Mehta, P., Gürses, D., & Yildiz, A.R. (2023). Cheetah optimization algorithm for optimum design of heat exchangers. Materials Testing, 65 (8), 1230–1236. https://doi.org/doi:10.1515/mt....
 
19.
Sandhu, R. (1971). Parametric study of optimum fiber orientation for filamentary sheet. In Technical Memorandum FBC-71-1. Air Force Flight Dynamics Laboratory, Director of Laboratories, Air Force Systems Command, Wright Patterson Air Force Base, Ohio.
 
20.
Sorohan, S., Constantinescu, D.M., Sandu, M., & Sandu, A.G. (2018). On the homogenization of hexagonal honeycombs under axial and shear loading. Part I: Analytical formulation for free skin effect. Mechanics of Materials, 119, 74–91. https://doi.org/10.1016/j.mech....
 
21.
Tavakoli, R. (2014). Multimaterial topology optimization by volume constrained Allen-Cahn system and regularized projected steepest descent method. Computer Methods in Applied Mechanics and Engineering, 276, 534–565. https://doi.org/10.1016/j.cma.....
 
22.
Vasile, A., Coropeţchi, I.C., Sorohan, Ș., Picu, C.R., & Constantinescu, D.M. (2022). A simulated annealing algorithm for stiffness optimization. Procedia Structural Integrity, 37, 857–864. https://doi.org/10.1016/j.pros....
 
23.
Yoon, G.H. (2021). Multiphysics topology optimization scheme considering the evaporation cooling effect. Computers & Structures, 244, Article 106409. https://doi.org/10.1016/j.comp....
 
24.
Yu, Y., Hur, T., Jung, J., & Jang, I.G. (2019). Deep learning for determining a near-optimal topological design without any iteration. Structural and Multidisciplinary Optimization, 59 (3), 787–799. https://doi.org/10.1007/s00158....
 
25.
Zhang, Y., Peng, B., Zhou, X., Xiang, C., & Wang, D. (2019). A deep Convolutional Neural Network for topology optimization with strong generalization ability. arXiv. https://doi.org/10.48550/arXiv....
 
26.
Zhu, B., Zhang, X., Zhang, H., Liang, J., Zang, H., Li, H., & Wang, R. (2020). Design of compliant mechanisms using continuum topology optimization: A review. Mechanism and Machine Theory, 143, Article 103622. https://doi.org/10.1016/j.mech....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top