ARTICLE
3D stability analysis of the poker chip detachment problem
 
More details
Hide details
1
Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Műegyetem rkp. 3., H-1111, Budapest, Hungary
 
 
Submission date: 2024-12-15
 
 
Final revision date: 2025-02-28
 
 
Acceptance date: 2025-03-13
 
 
Online publication date: 2025-07-02
 
 
Corresponding author
András Levente Horváth   

Department of Applied Mechanics, Budapest University of Technology and Economics, Hungary
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Dry adhesives utilizing the Van der Waals forces are the focus of many applications. Detachment phenomena are especially important to explore in this field. Most previous research was done using axisymmetric models. However, several important cases cannot be analyzed with this simplification. In this work, we build a 3D model to examine the classical “poker chip” problem. We analyze the propagation stability for detachments initiating at the edge of the chip. Novel stability maps are presented for the investigated non-axisymmetric cases. The effect of compressibility and propagation front shape are presented as well.
REFERENCES (20)
1.
Antunes, F.V., Ferreira, J.M., & Byrne, J. (1999). Stress intensity factor calculation based on the work of external forces. International Journal of Fracture, 98 (1), 1–14. https://doi.org/10.1023/A:1018....
 
2.
Arzt, E., Gorb, S., & Spolenak, R. (2003). From micro to nano contacts in biological attachment devices. Proceedings of the National Academy of Sciences, 100 (19), 10603–10606. https://doi.org/10.1073/pnas.1....
 
3.
Asp, L.E., Berglund, L.A., & Gudmundson, P. (1995). Effects of a composite-like stress state on the fracture of epoxies. Composites Science and Technology, 53 (1), 27–37. https://doi.org/10.1016/0266-3....
 
4.
Autumn, K., Sitti, M., Liang, Y.A., Peattie, A.M., Hansen, W.R., Sponberg, S., Kenny, T.W., Fearing, R., Israelachvili, J.N., & Full, R.J. (2002). Evidence for van der Waals adhesion in gecko setae. Proceedings of the National Academy of Sciences, 99 (19), 12252–12256. https://doi.org/10.1073/pnas.1....
 
5.
Balijepalli, R.G., Begley, M.R., Fleck, N.A., McMeeking, R.M., & Arzt, E. (2016). Numerical simulation of the edge stress singularity and the adhesion strength for compliant mushroom fibrils adhered to rigid substrates. International Journal of Solids and Structures, 85–86, 160–171.https://doi.org/10.1016/j.ijso....
 
6.
Balijepalli, R.G., Fischer, S.C.L., Hensel, R., McMeeking, R.M., & Arzt, E. (2017). Numerical study of adhesion enhancement by composite fibrils with soft tip layers. Journal of the Mechanics and Physics of Solids, 99, 357–378. https://doi.org/10.1016/j.jmps....
 
7.
Benvidi, F.H., & Bacca, M. (2021). Theoretical limits in detachment strength for axisymmetric bi-material adhesives. Journal of Applied Mechanics, 88 (12), Article 121007. https://doi.org/10.1115/1.4052....
 
8.
Bricotte, L., Chougrani, K., Alard, V., Ladmiral, V., & Caillol, S. (2024). Adhesion theories: A didactic review about a century of progress. International Journal of Adhesion and Adhesives, 132, Article 103673. https://doi.org/10.1016/j.ijad....
 
9.
Dassault Systèmes (2022). Abaqus version 2022.
 
10.
Gent, A.N., & Lindley, P.B. (1957). Internal flaws in bonded cylinders of soft vulcanized rubber subjected to tensile loads. Nature, 180, 912–913. https://doi.org/10.1038/180912....
 
11.
Gorb, S.N., & Varenberg, M. (2007). Mushroom-shaped geometry of contact elements in biological adhesive systems. Journal of Adhesion Science and Technology, 21 (12–13), 1175–1183. https://doi.org/10.1163/156856....
 
12.
Hao, S., Huang, R., & Rodin, G.J. (2024). Constitutive models for confined elastomeric layers: Effects of nonlinearity and compressibility. Mechanics of Materials, 190, Article 104912. https://doi.org/10.1016/j.mech....
 
13.
Hensel, R., Moh, K., & Arzt, E. (2018). Engineering micropatterned dry adhesives: From contact theory to handling applications. Advanced Functional Materials, 28 (28), Article 1800865. https://doi.org/10.1002/adfm.2....
 
14.
Horváth, A.L., & Kossa, A. (2024). Stability maps for the slightly compressible poker chip detachment problem. Finite Elements in Analysis and Design, 242, Article 104257. https://doi.org/10.1016/j.fine....
 
15.
Kumar, A., & Lopez-Pamies, O. (2021). The poker-chip experiments of Gent and Lindley (1959) explained. Journal of the Mechanics and Physics of Solids, 150, Article 104359. https://doi.org/10.1016/j.jmps....
 
16.
Lindsey, G.H. (1967). Triaxial fracture studies. Journal of Applied Physics, 38 (12), 4843–4852. https://doi.org/10.1063/1.1709....
 
17.
Millwater, H., Wagner, D., Baines, A., & Montoya, A. (2016). A virtual crack extension method to compute energy release rates using a complex variable finite element method. Engineering Fracture Mechanics, 162, 95–111. https://doi.org/10.1016/j.engf....
 
18.
Movchan, A.B., Rebrov, K.R., & Rodin, G.J. (2021). Axisymmetric deformation of compressible, nearly incompressible, and incompressible thin layers between two rigid surfaces. International Journal of Solids and Structures, 214–215, 61–73. https://doi.org/10.1016/j.ijso....
 
19.
Schneider, G.A., & Swain, M.V. (2015). The Schwickerath adhesion test: A fracture mechanics analysis. Dental Materials, 31 (8), 986–991. https://doi.org/10.1016/j.dent....
 
20.
Varenberg, M., Pugno, N.M., & Gorb, S.N. (2010). Spatulate structures in biological fibrillar adhesion. Soft Matter, 6, 3269–3272. https://doi.org/10.1039/C00320....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top