ARTICLE
Experimental identification of CP-Cu yield surface and its evolution due to complex loading pre-deformation
 
More details
Hide details
1
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
 
 
Submission date: 2025-01-26
 
 
Final revision date: 2025-02-20
 
 
Acceptance date: 2025-03-10
 
 
Online publication date: 2025-07-07
 
 
Corresponding author
Mateusz Kopec   

Department of Experimental Mechanics, Institute of Fundamental Technological Research Polish Academy of Sciences, 5B Pawinskiego St., 02-106, Warsaw, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study examines the yield surface evolution of technical copper (CP-Cu) under complex loading, focusing on monotonic tension and combined tension with cyclic torsion. Using biaxial testing, initial and pre-deformed yield surfaces were analysed. Results indicate kinematic hardening with tensile pre-strain, while cyclic torsion induces anisotropic hardening at lower amplitudes (±0.1 %) and softening at higher amplitudes (±0.2 %). Strain amplitude significantly impacts material response, while frequency has a minor effect.
REFERENCES (25)
1.
Czerwinski, F. (2024). Aluminum alloys for electrical engineering: a review. Journal of Materials Science, 59 (32), 14847–14892. https://doi.org/10.1007/s10853....
 
2.
Davis, J.R. (2001). Copper and copper alloys. In J.R. Davis (Ed.), Alloying: Understanding the basics (pp. 457–494). ASM International. https://doi.org/10.31399/asm.t....
 
3.
Dietrich, L., & Kowalewski, Z.L. (1997). Experimental investigation of an anisotropy in copper subjected to predeformation due to constant and monotonic loadings. International Journal of Plasticity, 13 (1–2), 87–109. https://doi.org/10.1016/S0749-....
 
4.
Dubey, V.P., Kopec, M., Łazińska, M., & Kowalewski, Z.L. (2023). Yield surface identification of CP-Ti and its evolution reflecting pre-deformation under complex loading. International Journal of Plasticity, 167, Article 103677. https://doi.org/10.1016/j.ijpl....
 
5.
Gazder, A.A., Dalla Torre, F., Gu, C.F., Davies, C.H.J., & Pereloma, E.V. (2006). Microstructure and texture evolution of bcc and fcc metals subjected to equal channel angular extrusion. Materials Science and Engineering: A, 415 (1–2), 126–139. https://doi.org/10.1016/j.msea....
 
6.
Guschlbauer, R., Momeni, S., Osmanlic, F., & Körner, C. (2018). Process development of 99.95% pure copper processed via selective electron beam melting and its mechanical and physical properties. Materials Characterization, 143, 163–170. https://doi.org/10.1016/j.matc....
 
7.
Hecker, S.S. (1971). Yield surfaces in prestrained aluminum and copper. Metallurgical Transactions, 2 (8), 2077–2086. https://doi.org/10.1007/BF0291....
 
8.
Helling, D.E., Miller, A.K., & Stout, M.G. (1986). An experimental investigation of the yield loci of 1100-0 aluminum, 70:30 brass, and an overaged 2024 aluminum alloy after various prestrains. Journal of Engineering Materials and Technology, 108 (4), 313–320. https://doi.org/10.1115/1.3225....
 
9.
Jadhav, S.D., Goossens, L.R., Kinds, Y., Van Hooreweder, B., & Vanmeensel, K. (2021). Laser-based powder bed fusion additive manufacturing of pure copper. Additive Manufacturing, 42, Article 101990. https://doi.org/10.1016/j.addm....
 
10.
Jiang, Q., Zhang, P., Yu, Z., Shi, H., Wu, D., Yan, H., Ye, X., Lu, Q., & Tian, Y. (2021). A review on additive manufacturing of pure copper. Coatings, 11 (6), Article 740. https://doi.org/10.3390/coatin....
 
11.
Kopec, M., Dubey, V.P., Pawlik, M., Wood, P., & Kowalewski, Z.L. (2024). Experimental identification of yield surface for additively manufactured stainless steel 316L under tension–compression-torsion conditions considering its printing orientation. Manufacturing Letters, 41, 28–32. https://doi.org/10.1016/j.mfgl....
 
12.
Lai, Z., Mai, Y., Song, H., Mai, J., & Jie, X. (2022). Heterogeneous microstructure enables a synergy of strength, ductility and electrical conductivity in copper alloys. Journal of Alloys and Compounds, 902, Article 163646. https://doi.org/10.1016/j.jall....
 
13.
Li, M., & Zinkle, S.J. (2012). 4.20 – Physical and mechanical properties of copper and copper alloys. Comprehensive Nuclear Materials, 4, 667–690. https://doi.org/10.1016/B978-0....
 
14.
Liu, C., Yang, X., Ding, Y., Li, H., Wan, S., Guo, Y., & Li, Y. (2023). The yielding behavior of TU00 pure copper under impact loading. International Journal of Mechanical Sciences, 245, Article 108110. https://doi.org/10.1016/j.ijme....
 
15.
Mair, W.M., & Pugh, H.Ll.D. (1964). Effect of pre-strain on yield surfaces in copper. Journal of Mechanical Engineering Science, 6 (2), 150–163. https://doi.org/10.1243/JMES_J....
 
16.
Pan, Q., Jing, L., & Lu, L. (2023). Enhanced fatigue endurance limit of Cu through low-angle dislocation boundary. Acta Materialia, 244, Article 118542. https://doi.org/10.1016/j.acta....
 
17.
Pingale, A.D., Owhal, A., Katarkar, A.S., Belgamwar, S.U., & Rathore, J.S. (2021). Recent researches on Cu-Ni alloy matrix composites through electrodeposition and powder metallurgy methods: A review. Materials Today: Proceedings, 3rd International Conference on Advances in Mechanical Engineering and Nanotechnology, 47 (Part 11), 3301–3308. https://doi.org/10.1016/j.matp....
 
18.
Scudino, S., Unterdörfer, C., Prashanth, K.G., Attar, H., Ellendt, N., Uhlenwinkel, V., & Eckert, J. (2015). Additive manufacturing of Cu–10Sn bronze. Materials Letters, 156, 202–204. https://doi.org/10.1016/j.matl....
 
19.
Semih, Ö., & Recep, A. (2023). Investigation of microstructure, machinability, and mechanical properties of new-generation hybrid lead-free brass alloys. High Temperature Materials and Processes, 42 (1), Article 20220263. https://doi.org/10.1515/htmp-2....
 
20.
Stepanov, N.D., Kuznetsov, A.V., Salishchev, G.A., Raab, G.I., & Valiev, R.Z. (2012). Effect of cold rolling on microstructure and mechanical properties of copper subjected to ECAP with various numbers of passes. Materials Science and Engineering: A, 554, 105–115. https://doi.org/10.1016/j.msea....
 
21.
Sundar Singh Sivam, S.P., Rajendran, R., & Harshavardhana, N. (2023). An investigation of stored energy in uniaxial and biaxial directional rolling on mechanical properties and microstructure of pure copper. Mechanics Based Design of Structures and Machines, 51 (5), 2831–2843. https://doi.org/10.1080/153977....
 
22.
Vahedi Nemani, A., Ghaffari, M., Sabet Bokati, K., Valizade, N., Afshari, E., & Nasiri, A. (2024). Advancements in additive manufacturing for copper-based alloys and composites: A comprehensive review. Journal of Manufacturing and Materials Processing, 8 (2), Article 54. https://doi.org/10.3390/jmmp80....
 
23.
Wu, X.X., San, X.Y., Gong, Y.L., Chen, L.P., Li, C.J., & Zhu, X.K. (2013). Studies on strength and ductility of Cu–Zn alloys by stress relaxation. Materials & Design, 47, 295–299. https://doi.org/10.1016/j.matd....
 
24.
Zhang, W.-J., Huang, L., Mi, X.-J., Xie, H.-F., Feng, X., & Ahn, J.H. (2024). Researches for higher electrical conductivity copper-based materials. cMat, 1 (1), e13. https://doi.org/10.1002/cmt2.1....
 
25.
Zhou, M., Geng, Y., Zhang, Y., Ban, Y., Li, X., Jia, Y., Liang, S., Tian, B., Liu, Y., & Volinsky, A.A. (2023). Enhanced mechanical properties and high electrical conductivity of copper alloy via dual-nanoprecipitation. Materials Characterization, 195, Article 112494. https://doi.org/10.1016/j.matc....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top