ARTICLE
Numerical modeling of uncertainty in acoustic propagation via generalized polynomial chaos
 
More details
Hide details
1
University of Sfax, National School of Engineers of Sfax, Mechanical Modeling and Manufacturing Laboratory (LA2MP), Sfax, Tunisia
 
2
University of Rouen Normandie, LMN, National Institute of Applied Sciences (INSA Rouen), Rouen, France
 
 
Submission date: 2017-08-24
 
 
Acceptance date: 2018-04-03
 
 
Publication date: 2019-01-20
 
 
Journal of Theoretical and Applied Mechanics 2019;57(1):3-15
 
KEYWORDS
ABSTRACT
This work aims at increasing the performance prediction for acoustic propagation systems that will operate in the presence of the inevitable parameters uncertainty. In the present contribution, the finite element method is applied to solve an acoustic problem described by the Helmholz equation when the geometric and material properties present uncertainty. The influence of the uncertainty of physical parameters on the pressure field is discussed. The results using the polynomial chaos expansion method are compared with Monte Carlo simulations. It is show that uncertainty levels in the input data could result in large variability in the calculated pressure field in the domain.
 
REFERENCES (36)
1.
Blatman G., Sudret B., 2008, Sparse polynomial chaos expansions and adaptive stochastic finite elements using a regression approach, C.R. Mecanique, 336, 518-523.
 
2.
Blazejewski A., 2013, Modal analysis application in passive sound level control inside bounded space in steady state, 12th Conference of Dynamical Systems Theory and Applications, Dynamical Systems-Application, 409-420.
 
3.
Blazejewski A., Koziol P., Luczak M., 2014, Acoustical analysis of enclosure as initial approach to vehicle induced noise analysis comparatevely using STFT and wavelets, Archives of Acoustics, 39, 385-394.
 
4.
Cameron H., Martin W., 1947, The orthogonal development of non linear functionals in series of Fourier-Hermite functional, Annals of Mathematics, 48, 385-392.
 
5.
Cheung Y.F., Jin W.G., 1991, Solution of Helmholtz equation by Trefftz method, International Journal for Numerical Methods in Engineering, 32, 63-78.
 
6.
Creamer D.B., 2006, On using polynomial chaos for modeling uncertainty in acoustic propagation, Journal of the Acoustical Society of America, 119, 4, 1979-1994.
 
7.
Dammak K., Elhami A., Koubaa S., Walha L., Haddar M., 2017a, Reliability based design optimization of coupled acoustic-structure system using generalized polynomial chaos, International Journal of Mechanical Sciences, 134, 75-84.
 
8.
Dammak K., Koubaa S., Elhami A., Walha L., Haddar M., 2017b, Numerical modelling of vibro-acoustic problem in presence of uncertainty: Application to a vehicle cabin, Applied Acoustics, DOI: 10.1016/j.apacoust.2017.06.001.
 
9.
Fisher J., Bhattacharya R., 2008, Stability analysis of stochastic systems using polynomial chaos, American Control Conference.
 
10.
Ghanem R.G., Spanos P.D., 1991, Stochastic Finite Elements: a Spectral Approach, Dover Publication INC.
 
11.
Hurtado J.E., Alvarez D.A., 2012, The encounter of interval and probabilistic approaches to structural reliability at the design point, Computer Methods in Applied Mechanics and Engineering, 225-228, 74-94.
 
12.
Ihlenburg F., Babuska I., 1995, Finite element solution of the Helmholtz equation with high wave number. Part I: The h-version of the FEM, Computers and Mathematics with Applications, 30, 9-37.
 
13.
Kesentini A., Taktak M., Ben Souf M.A., Bareille O., Ichchou M.N., Haddar M., 2015, Computation of the scattering matrix of guided acoustical propagation by the Wave Finite Element approach, Applied Acoustics.
 
14.
Kim Y., Nelson P.A., 2004, Estimation of acoustic source strengt hwith in a cylindrical duct by inverse methods, Journal of Sound and Vibration, 275, 391-413.
 
15.
Lan J.H., 2005, Validation of 3D acoustic propagation code with analytical and experimental results, 11th AIAA/CEAS Aeroacoustics Conference.
 
16.
Lepage K.D., 2006, Estimation of acoustic propagation uncertainty through polynomial chaos expansions, 9th International Conference on Information Fusion.
 
17.
Lins E.F., Rochinha F.A., 2009, Analysis of uncertainty propagation in acoustics through a sparse grid collocation scheme, 20th International Congress of Mechanical Engineering.
 
18.
Mansouri M., Radi B., El-Hami A., 2012a, Reliability-based design optimization for the analysis of vibro-acoustic problems, Proceedings of the Eleventh International Conference on Computational Structures Technology.
 
19.
Mansouri M., Radi B., El-Hami A., 2013, Coupling modal synthesis and reliability for studying aero-acoustic problems, 21me Congr´es Fran¸cais de M´ecanique.
 
20.
Mansouri M., Radi B., El-Hami A., Borza D., 2012b, Reliability analysis of vibro-acoustic problems, Proceedings of the 1st International Symposium on Uncertainty Quantification and Stochastic Modeling.
 
21.
Meissner M., 2008, Influence of wall absorption on low-frequency dependence of reverberation time in room of irregular shape, Applied Acoustics, 69, 583-590.
 
22.
Nark D.M., Farassat F., Pope D.S., Vatsa V., 2003, The Development of the Ducted Fan Noise Propagation and Radiation Code CDUCT-LARC, American Institute of Aeronautics and Astronautics.
 
23.
Nark D.M., Watson W.R., Jones M.G., 2005, An Investigation of Two Acoustic Propagation Codes for Three-Dimensional Geometries, American Institute of Aeronautics and Astronautics.
 
24.
Nechak L., Berger S., Aubry E., 2013, Robust analysis of uncertain dynamic systems: combination of the centre manifold and polynomial chaos theories, WSEAS Transactions on Systems, 98, 386-395.
 
25.
Ng L.W.T., Eldred M.S., 2012, Multifidelity uncertainty quantification using non-intrusive polynomial chaos and stochastic collocation, Structural Dynamics and Materials Conference.
 
26.
Sepahvand K., Marburg S., 2014, On uncertainty quantification in vibroacoustic problems, Proceedings of the 9th International Conference on Structural Dynamics, EURODYN.
 
27.
Smith A.H.C., Monti A., Member S., Ponci F., 2007, Indirect measurements via a polynomial chaos observer, IEEE Transactions on Instrumentation and Measurement, 56, 743-752.
 
28.
Taktak M., 2008, Mesure de la matrice de diffusion d’un tronçon traité cylindrique e recouvert par un materiaux: apllication à la mesure de son efficacité et la détermination de son impedance homogeneisée, L’Université de Technologie de Compiègne.
 
29.
Taktak M., Jrad H., Karra C., Bentahar M., Haddar M., 2011, Numerical modeling of the acoustic propagation in a three-dimensional wave guide in the presence of flow, ACTA Acoustica United with Acoustica, 97, 354-465.
 
30.
Taktak M., Majdoub M.A., Bentahar M., Haddar M., 2012, Numerical modelling of the acoustic pressure inside an axisymmetric lined flow duct, Archives of Acoustics, 37, 151-160.
 
31.
Wan X., Karniadakis G.E., 2006, Multi-element generalized polynomial chaos for arbitrary probability measures, Journal of Scientific Computing, 28, 901-928.
 
32.
Wiener N., 1938, The homogeneous chaos, American Journal of Mathematics, 60, 897-936.
 
33.
Xia B., Yin S., Yu D., 2015, A new random interval method for response analysis of structural acoustic system with interval random variables, Applied Acoustics, 99, 31-42.
 
34.
Xiu D., Karniadakis G.E., 2002, The Wiener-Askey polynomial chaos for stochastic differential equations, Journal of Scientific Computing, 24, 619-644.
 
35.
Xiu D., Karniadakis G.E., 2003, Modeling uncertainty in flow simulations via generalized polynomial chaos, Journal of Computational Physics, 187, 137-167.
 
36.
Yang J., Kessissoglou N., 2013, Modal analysis of structures with uncertainties using polynomial chaos expansion, Proceedings of Acoustics.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top