ARTICLE
Moment-curvature relation for laser-assisted bending of thin Inconel 718 beam
 
More details
Hide details
1
Institute of Fundamental Technological Research, Polish Academy of Sciences, Warsaw, Poland
 
2
Institute of Structural Analysis, Poznan University of Technology, Poznan, Poland
 
3
Center for Laser Technology of Metals, Kielce University of Technology, Kielce, Poland
 
 
Submission date: 2024-12-12
 
 
Final revision date: 2025-01-24
 
 
Acceptance date: 2025-02-20
 
 
Publication date: 2025-06-23
 
 
Corresponding author
Jacek Widlaszewski   

Department of Experimental Mechanics, Institute of Fundamental Technological Research Polish Academy of Sciences, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Moment-curvature relations for the thermo-mechanical bending of slender beams made of Inconel 718 in the factory-annealed state are determined in the study. The experimentally validated finite element method (FEM) model with the Johnson–Cook material model is used. For the considered conditions of thermo-mechanical processing, the final beam curvature can be estimated as a linear function of the curvature due to the elastic pre-stress. In processing 1mm thick material, using laser power 500W and feed rate 3.33 mm/s, a safe time distance of at least 5.4 minutes is estimated between the presence of high material temperature and the start of precipitation processes.
REFERENCES (25)
1.
Aher, V., & Navthar, R.R. (2024). A comprehensive review on laser bending of advanced materials. Lasers in Manufacturing and Materials Processing, 11 (3), 814–852. https://doi.org/10.1007/s40516....
 
2.
Bammer, F. (2024). Optimized heat distributions for laser-assisted forming. Journal of Engineering, 2024 (1), Article 9470839. https://doi.org/10.1155/2024/9....
 
3.
Duflou, J.R., & Aerens, R. (2006). Force reduction in bending of thick steel plates by localized preheating. CIRP Annals, 55 (1), 237–240. https://doi.org/10.1016/S0007-....
 
4.
Dutta, P.P., Kalita, K., & Dixit, U.S. (2018). Electromagnetic-force-assisted bending and straightening of AH36 steel strip by laser irradiation. Lasers in Manufacturing and Materials Processing, 5 (3), 201–221. https://doi.org/10.1007/s40516....
 
5.
Fetene, B.N., Shufen, R., & Dixit, U.S. (2018). FEM-based neural network modeling of laser-assisted bending. Neural Computing & Applications, 29 (6), 69–82. https://doi.org/10.1007/s00521....
 
6.
Guo, Y., Shi, Y., Wang, X., Sun, R., & Bing, Z. (2020). An analytical model of laser bending angle under preload. The International Journal of Advanced Manufacturing Technology, 108 (7-8), 2569–2577. https://doi.org/10.1007/s00170....
 
7.
Hongbo, D., & Gaochao, W. (2015). Effect of deformation process on superplasticity of Inconel 718 alloy. Rare Metal Materials and Engineering, 44 (2), 298–302. https://doi.org/10.1016/S1875-....
 
8.
Kratky, A. (2007). Laser assisted forming techniques. Proceedings Volume 6346, XVI International Symposium on Gas Flow, Chemical Lasers, and High-Power Lasers, Article 634615. https://doi.org/10.1117/12.738....
 
9.
Kurp, P., Mucha, Z.,Mulczyk, K., Gradoń, R., & Trela, P. (2016). The influence of surface preparation on the absorption coefficient of laser radiation. Proceedings Volume 10159, Laser Technology 2016: Progress and Applications of Lasers, 10159, Article 101590M. https://doi.org/10.1117/12.225....
 
10.
Lauwers, B., Klocke, F., Klink, A., Tekkaya, A.E., Neugebauer, R., & Mcintosh, D. (2014). Hybrid processes in manufacturing. CIRP Annals, 63 (2), 561–583. https://doi.org/10.1016/j.cirp....
 
11.
Liao, W.-X., Lee, W.-T., Lin, C.-K., Tung, P.-C., & Ho, J.-R. (2024). Innovative laser-assisted glass bending approaches using a near-infrared continuous wave laser. Optics and Lasers in Engineering, 178, Article 108162. https://doi.org/10.1016/j.optl....
 
12.
Min, J., Wang, J., Lian, J., Liu, Y., & Hou, Z. (2023). Laser-assisted robotic roller forming of ultrahigh-strength steel QP1180 with high precision. Materials, 16 (3), Article 1026. https://doi.org/10.3390/ma1603....
 
13.
Mukherjee, T., Zhang, W., & DebRoy, T. (2017). An improved prediction of residual stresses and distortion in additive manufacturing. Computational Materials Science, 126, 360–372. https://doi.org/10.1016/j.comm....
 
14.
Neugebauer, R., Altan, T., Geiger, M., Kleiner, M., & Sterzing, A. (2006). Sheet metal forming at elevated temperatures. CIRP Annals, 55 (2), 793–816. https://doi.org/10.1016/j.cirp....
 
15.
Nowak, Z., Nowak, M., Pecherski, R.B., Wisniewski, K., Widłaszewski, J., & Kurp, P. (2019). Computational modeling of thermoplastic behavior of Inconel 718 in application to laser-assisted bending of thin-walled tubes. International Journal for Multiscale Computational Engineering, 17 (3), 317–338. https://doi.org/10.1615/IntJMu....
 
16.
Oradei-Basile, A., & Radavich, J.F. (1991). A current T-T-T diagram for wrought alloy 718. In E.A. Loria (Ed.), Superalloys 718, 625 and various derivatives (pp. 325–335). The Minerals, Metals & Materials Society. Warrendale. https://doi.org./10.7449/1991/...
 
17.
Ponticelli, G.S., Guarino, S., & Giannini, O. (2018). A fuzzy logic-based model in laser-assisted bending springback control. The International Journal of Advanced Manufacturing Technology, 95 (9-12), 3887–3898. https://doi.org/10.1007/s00170....
 
18.
Prasad, K.S., Kamal, T., Panda, S.K., Kar, S., Narayana Murty, S.V.S., & Sharma, S.C. (2015). Finite element validation of forming limit diagram of IN-718 sheet metal. Materials Today: Proceedings, 2 (4–5), 2037–2045. https://doi.org/10.1016/j.matp....
 
19.
Qu, F.S., Lu, Z., Xing, F., & Zhang, K.F. (2012). Study on laser beam welding/superplastic forming technology of multi-sheet cylinder sandwich structure for Inconel718 superalloy with ultra-fine grains. Materials & Design, 39, 151–161. https://doi.org/10.1016/j.matd....
 
20.
Special Metals Corporation (2007). Inconel Alloy 718. Retrieved December 12, 2024, fom https://www.specialmetals.com/....
 
21.
Tan, Y.B., Ma, Y.H., & Zhao, F. (2018). Hot deformation behavior and constitutive modeling of fine grained Inconel 718 superalloy. Journal of Alloys and Compounds, 741, 85–96. https://doi.org/10.1016/j.jall....
 
22.
Toponogov, V.A. (2006). Differential geometry of curves and surfaces. A Concise Guide. Boston: Birkhäuser.
 
23.
Wei, B., Zhang, F., He, K., Zhou, C., & Du, R. (2021). Heat-assisted incremental bending of metal plates with unsymmetrical curvatures. The International Journal of Advanced Manufacturing Technology, 114 (11-12), 3437–3448. https://doi.org/10.1007/s00170....
 
24.
Widłaszewski, J., Nowak, M., Nowak, Z., & Kurp, P. (2019). Laser-assisted thermomechanical bending of tube profiles. Archives of Metallurgy and Materials, 64 (1), 421–430. https://doi.org/10.24425/amm.2....
 
25.
Widłaszewski, J. (2022). Laser micro bending mechanism for high-precision adjustment in mechatronic systems. In J. Holnicki-Szulc, D. Wagg, & Ł. Jankowski (Eds.), 7th European Conference on Structural Control. Book of abstracts and selected papers (pp. 262–269). Institute of Fundamental Technological Research and Committee on Mechanics, Polish Academy of Sciences. http://eacs2022.ippt.pan.pl/EA....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top