Internal heat sources in large strain thermo-elasto-plasticity – theory and finite element simulations
More details
Hide details
Cracow University of Technology, Chair of Computational Engineering, Cracow, Poland
TU Dortmund University, Institute of Mechanics, Department of Mechanical Engineering, Dortmund, Germany
Submission date: 2023-10-25
Final revision date: 2023-11-22
Acceptance date: 2024-01-22
Online publication date: 2024-03-17
Publication date: 2024-04-30
Corresponding author
Balbina Wcisło   

Chair of Computational Engineering, Cracow University of Technology, Poland
Journal of Theoretical and Applied Mechanics 2024;62(2):293-306
Bonet J., Wood R.D., 3008, Nonlinear Continuum Mechanics for Finite Element Analysis, 2nd ed., Cambridge University Press, Cambridge.
de Souza Neto E.A., Perić D., Owen D.R.J., 2008, Computational Methods for Plasticity. Theory and Applications, John Wiley & Sons, Chichester, UK.
Duszek M., Perzyna P., 1991, The localization of plastic deformation in thermoplastic solids, International Journal of Solids and Structures, 27, 11, 1419-1443.
Haupt P., 2002, Continuum Mechanics and Theory of Materials, Springer.
Holzapfel G.A., 2000, Nonlinear Solid Mechanics. A Continuum Approach for Engineering, John Wiley & Sons, Chichester.
Korelc J., Wriggers P., 2016, Automation of Finite Element Methods, Springer International Publishing Switzerland.
Marsden J.E., Hughes T.J.R., 1983, Mathematical Foundations of Elasticity, Dover Publications, Inc., New York.
Mucha M., Rose L., Wcisło B., Menzel A., Pamin J., 2023, Experiments and numerical simulations of Lueders bands and Portevin-Le Chatelier effect in aluminium alloy AW5083, Archives of Mechanics, 75, 3, 301-336.
Musiał S., Maj M., Urbański L., Nowak M., 2022, Field analysis of energy conversion during plastic deformation of 310S stainless steel, International Journal of Solids and Structures, 238, 1, 111411.
Oliferuk W., Maj M., Zembrzycki K., 2013, Determination of the energy storage rate distribution in the area of strain localization using infrared and visible imaging, Experimental Mechanics, 55, 4, 753-760.
Oppermann P., Denzer R., Menzel A., 2022, A thermo-viscoplasticity model for metals over wide temperature ranges – application to case hardening steel, Computational Mechanics, 69, 541-563.
Ristinmaa M., Wallin M., Ottosen N.S., 2007, Thermodynamic format and heat generation of isotropic hardening plasticity, Acta Mechanica, 194, 103-121.
Rose L., Menzel A., 2021, Identification of thermal material parameters for thermo-mechanically coupled material models, Meccanica, 56, 393-416.
Simo J.C., 1998, Numerical analysis and simulation of plasticity, [In:] P.G. Ciarlet and J.L. Lions, Edit., Handbook of Numerical Analysis. Numerical Methods for Solids (Part 3), Vol, VI, 183-499, Elsevier Science, Boca Raton.
Simo J.C., Hughes T.J.R., 1998, Computational Inelasticity. Interdisciplinary Applied Mathematics, Vol. 7, Springer-Verlag, New York.
Simo J.C., Miehe C., 1992, Associative coupled thermoplasticity at finite strains: Formulation, numerical analysis and implementation, Computer Methods in Applied Mechanics and Engineering, 98, 1, 41-104.
Taylor G.I., Quinney H., 1934, The latent energy remaining in a metal after cold working, Proceedings of the Royal Society of London. Series A, 143, 307-326.
Truesdell C., Toupin R.A., 1960, The classical field theories, [In:] S. Flügge, Edit., Encyclopedia of Physics. Vol. III Principles of Classical Mechanics and Field Theory, 226-788, Springer-Verlag, Berlin Heidelberg.
Wcisło B., Pamin J., 2017, Local and non-local thermomechanical modeling of elastic-plastic materials undergoing large strains, International Journal for Numerical Methods in Engineering, 109, 1, 102-124.
Wcisło B., Pamin J., Rose L., Menzel A., 2023, On spatial vs. referential isotropic Fourier’s law in finite deformation thermomechanics, Engineering Transactions, 71, 1, 111–140.
Wriggers P., 2008, Nonlinear Finite Element Methods, Springer-Verlag, Berlin Heidelberg.
Wriggers P.A., Miehe C., Kleiber M., Simo J.C., 1992, On the coupled thermomechnical treatment of necking problems via finite element methods, International Journal for Numerical Methods in Engineering, 33, 869-883.
Zienkiewicz O.C., Taylor R.L., Zhu J.Z., 2005, The Finite Element Method: Its Basis and Fundamentals, 6th ed., Elsevier Butterworth-Heinemann.
Journals System - logo
Scroll to top