Key Lab of Disaster Forecast and Control in Engineering, Ministry of Education, School of Mechanics and Construction Engineering, Jinan University, Guangzhou, China
CORRESPONDING AUTHOR
Jianghong Xue
School of Mechanics and Construction Engineering, Jinan University, China
Submission date: 2021-11-24
Final revision date: 2022-01-13
Acceptance date: 2022-01-22
Online publication date: 2022-03-17
Publication date: 2022-04-30
Journal of Theoretical and Applied Mechanics 2022;60(2):239–252
This paper proposes theoretical and numerical approaches to scrutinize the free vibration
of orthogonal stiffened cylindrical shells. According to K´arman-Donnell shell theory, the
total energy of the stiffened cylindrical shells is derived. Based on the principle of minimum
potential energy, the eigenfunction related to the frequency is established and solved by
developing a Matlab program. Analytical solutions of the natural frequency for free vibraion
of the stiffened cylindrical shells are calculated and are verified against the finite element
results from ABAQUS software. On account of the observations from the parametric study,
an optimization scheme of the stiffeners is proposed.
REFERENCES(23)
1.
Ahmadi H., Foroutan K., 2019, Nonlinear vibration of stiffened multilayer FG cylindrical shells with spiral stiffeners rested on damping and elastic foundation in thermal environment, Thin-Walled Structures, 145, 106388.
Breslavskii I.D., Strel’nikova E.A., Avramov K.V., 2011, Free vibrations of a shallow shell in fluid under geometrically nonlinear deformation, Strength of Materials, 43, 1, 25-32.
Gan L., Li X.B., Zhang Z., 2009, Free vibration analysis of ring-stiffened cylindrical shells using wave propagation approach, Journal of Sound and Vibration, 326, 633-646.
Jafari A. A., Bagheri M., 2006, Free vibration of non-uniformly ring stiffened cylindrical shells using analytical, experimental and numerical methods, Thin-Walled Structures, 44, 82-90.
Lee H.W., Kwak M.K., 2015, Free vibration analysis of a circular cylindrical shell using the Rayleigh-Ritz method and comparison of different shell theories, Journal of Sound and Vibration, 353, 344-377.
Li Y.K., Sun W.H., Duan G., Liang J.H., 2013, Stress calculation for large storage oil tanks’ shells based on the theory of short cylindrical shell, Advanced Material Research, 602-604, 2163-2169.
Li Z.L., Hu H., Yu W., 2015, Free vibration of joined and orthogonally stiffened cylindricalspherical shells, Journal of Vibration and Shock, 34, 22, 129-137.
Mohamad S.Q., 2002, Recent research advances in the dynamic behavior of shells: 1989-2000, Part 1: Laminated composite shells, Applied Mechanics Reviews, 55, 4, 325-350.
Mohamad S.Q., Sullivan R. W., Wang W., 2010, Recent research advances on the dynamic analysis of composite shells: 2000-2009, Composite Structures, 93, 14-31.
Rout M., Bandyopadhyay T., Karmakar A., 2017, Free vibration analysis of pretwisted delaminated composite stiffened shallow shells: A finite element approach, Journal of Reinforced Plastics and Composites, 36, 8, 619-636.
Sadeghifar M., Bagheri M., Jafari A.A., 2010, Multiobjective optimization of orthogonally stiffened cylindrical shells for minimum weight and maximum axial buckling load, Thin-Walled Structures, 48, 12, 979-988.
Sadovský, Z., Ďuricová, A., Ivančo, V., Kriváček, J., 2009, Imperfection measures of eigen- and periodic modes of axially loaded stringer-stiffened cylindrical shell, Proceedings of the Institution of Mechanical Engineers, Part G – Journal of Aerospace Engineering, 224, 601-612.
Wang X.T., Yao W., Liang C., Ji N., 2007, Stability characteristics of ring-stiffened cylindrical shells under different longitudinal and transverse external pressures, Journal of Marine Science and Application, 6, 3, 33-38.
Xue J.H., Yuan D., Han F., Liu R., 2013, An extension of Kárman-Donnell’s theory for non-shallow, long cylindrical shells undergoing large deflection, European Journal of Mechanics A/Solids, 37, 329-35.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.