ARTICLE
Timoshenko beam model for vibration analysis of composite steel-polymer concrete box beams
 
More details
Hide details
1
West Pomeranian University of Technology, Department of Mechanical Engineering and Mechatronics, Szczecin, Poland
 
 
Submission date: 2020-03-02
 
 
Acceptance date: 2020-04-14
 
 
Online publication date: 2020-07-15
 
 
Publication date: 2020-07-15
 
 
Corresponding author
Beata Niesterowicz   

Department of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology, Piastów, 70-310, Szczecin, Poland
 
 
Journal of Theoretical and Applied Mechanics 2020;58(3):799-810
 
KEYWORDS
TOPICS
ABSTRACT
The free vibration model of a steel-polymer concrete beam based on Timoshenko beam theory is presented in this paper. The results obtained on the basis of the model analysis, describing the values of the natural frequencies of the beam vibrations, were compared with the results obtained by the solution of the model formulated on the basis of the classical Euler-Bernoulli beam theory, the finite element model and the results of experimental studies. The developed model is characterized by high compliance with experimental data: the relative error in the case of natural vibration frequencies does not exceed 0.4%, on average 0.2%.
 
REFERENCES (25)
1.
Batra R.C., Xiao J., 2013, Finite deformations of curved laminated St. Venant-Kirchhoff beam using layer-wise third order shear and normal deformable beam theory (TSNDT), Composite Structures, 97, 147-164.
 
2.
Berczyński S., Wróblewski T., 2005, Vibration of steel-concrete composite beams using the Timoshenko beam model, Journal of Vibration and Controls, 11, 6, 829-848.
 
3.
Chakrabarti A., Sheikh A.H., Griffith M., Oehlers D.J., 2012, Dynamic response of composite beams with partial shear interaction using a higher-order beam theory, Journal of Structural Engineering, 139, 1, 47-56.
 
4.
Domagalski Ł., Jędrysiak J., 2016, Geometrically nonlinear vibrations of slender meso-periodic beams. The tolerance modeling approach, Composite Structures, 136, 270-277.
 
5.
Duarte A.P.C., Silva B.A., Silvestre N., De Brito J., Júlio E., Castro J.M., 2016, Finite element modelling of short steel tubes filled with rubberized concrete, Composite Structures, 150, 28-40.
 
6.
Dunaj P., Berczyński S., Chodźko M., 2020, Modelling of a steel-polymer concrete machine tool frame component, [In:] Innovations Induced by Research in Technical Systems, Springer, 13-24.
 
7.
Dunaj P., Berczyński S., Chodźko M., Niesterowicz B., 2020, Finite element modeling of the dynamic properties of composite steel-polymer concrete beams, Materials, 13, 7, 1630.
 
8.
Grygorowicz M., Paczos P., Wittenbeck L., Wasilewicz P., 2015, Experimental three-point bending of sandwich beam with corrugated core, [In:] AIP Conference Proceedings, AIP Publishing LLC, p. 800002, ISBN 0-7354-1287-1.
 
9.
Huang C.W., Su Y.H., 2008, Dynamic characteristics of partial composite beams, International Journal of Structural Stability and Dynamics, 8, 4, 665-685.
 
10.
Huang Z., Wang X., Wu N., Chu F., Luo J., 2019, A finite element model for the vibration analysis of sandwich beam with frequency-dependent viscoelastic material core, Materials, 12, 20, 3390.
 
11.
Jasiewicz M., Miądlicki K., 2019, Implementation of an algorithm to prevent chatter vibration in a CNC system, Materials, 12, 19, 3193.
 
12.
Kurzawa A., Pyka D., Jamroziak K., Bocian M., Kotowski P., Widomski P., 2018, Analysis of ballistic resistance of composites based on EN AC-44200 aluminum alloy reinforced with Al2O3 particles, Composite Structures, 201, 834-844.
 
13.
Li S., Han L.-H., Hou C., 2018, Concrete-encased CFST columns under combined compression and torsion: Analytical behaviour, Journal of Constructional Steel Research, 144, 236-252.
 
14.
Mackiewicz A., Pyka D., Pach J., Jamroziak K., Bocian M., 2020, Comparison of numerical modelling methods of innovative materials for ballistic shields, [In:] Advanced Materials for Defense, Springer, 119-127.
 
15.
Magnucka-Blandzi E., Walczak Z., Jasion P., Wittenbeck L., 2017, Buckling and vibrations of metal sandwich beams with trapezoidal corrugated cores – the lengthwise corrugated main core, Thin-Walled Structures, 112, 78-82.
 
16.
Magnucka-Blandzi E., 2018, Bending and buckling of a metal seven-layer beam with crosswise corrugated main core – comparative analysis with sandwich beam, Composite Structures, 183, 35-41.
 
17.
Marchelek K., Pajor M., Powałka B., 2002, Vibrostability of the milling process described by the time-variable parameter model, Journal of Vibration and Control, 8, 4, 467-479.
 
18.
Marczak J., Jędrysiak J., 2015, Tolerance modelling of vibrations of periodic three-layered plates with inert core, Composite Structures, 134, 854-861.
 
19.
Midas I.T., 2011, User’s Manual of Midas NFX.
 
20.
Pajor M., Marchelek K., Powalka B., 1999, Experimental verification of method of machine tool-cutting process system model reduction in face milling, WIT Transactions on Modelling and Simulation, 22.
 
21.
Peeters B., van der Auweraer H., Guillaume P., Leuridan J., 2004, The PolyMAX frequency-domain method: a new standard for modal parameter estimation? Shock and Vibration, 11, 3, 4, 395-409.
 
22.
Rakowski J., Guminiak M., 2015, Non-linear vibration of Timoshenko beams by finite element method, Journal of Theoretical and Applied Mechanics, 53, 3, 731-743.
 
23.
Roque C.M.C., Fidalgo D.S., Ferreira A.J.M., Reddy J.N., 2013, A study of a microstructure-dependent composite laminated Timoshenko beam using a modified couple stress theory and a meshless method, Composite Structures, 96, 532-537.
 
24.
Wojciechowski S., Matuszak M., Powałka B., Madajewski M., Maruda R.W., Królczyk G.M., 2019, Prediction of cutting forces during micro end milling considering chip thickness accumulation, International Journal of Machine Tools and Manufacture, 147, 103466.
 
25.
Xu R., Wu Y.-F., 2008, Free vibration and buckling of composite beams with interlayer slip by two-dimensional theory, Journal of Sound and Vibration, 313, 3-5, 875-890.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top