ARTICLE
Yield condition for concrete under moderate hydrostatic pressure
 
More details
Hide details
1
Warsaw University of Technology, Institute of Building Engineering, Warsaw, Poland
CORRESPONDING AUTHOR
Aleksander Szwed   

Strength of Materials, Theory of Elasticity and Plasticity, Faculty of Civil Engineering, Warsaw University of Technology, Armii Ludowej 16, 00-637, Warszawa, Poland
Online publication date: 2020-04-15
Publication date: 2020-04-15
Submission date: 2019-10-10
Acceptance date: 2019-12-05
 
Journal of Theoretical and Applied Mechanics 2020;58(2):325–338
KEYWORDS
TOPICS
ABSTRACT
A yield condition for concrete under moderate hydrostatic pressure is proposed as a nineparameter extension of the Lubliner yield criterion. The modification is introduced to both meridional and deviatoric cross-sections. Singularities are eliminated by means of a regularisation parameter of a clear geometrical interpretation. Calibration is carried out resulting in analytical formulae for the parameters depending on experimental data for five characteristic tests. A comparison with experimental data available in literature is drawn, showing consistency between the yield criterion and the test results. Convexity requirements for the proposed function are determined, leading to limitations on the input data.
 
REFERENCES (18)
1.
Abaqus 6.11 Theory Manual, 2011, Simulia.
 
2.
Argyris J.H., Faust G., Szimmat J., Warnke E.P., Willam K.J., 1974, Recent developments in the finite element analysis of prestressed concrete reactor vessels, Nuclear Engineering and Design, 28, 42-75, DOI: 10.1016/0029-5493(74)90088-0.
 
3.
Bigoni D., Piccolroaz A., 2004, Yield criteria for quasibrittle and frictional materials, International Journal of Solids and Structures, 41, 2855-2878, DOI: 10.1016/j.ijsolstr.2009.06.006.
 
4.
Drucker D.C., Prager W., 1952, Soil mechanics and plastic analysis or limit design, Quarterly of Applied Mechanics, 10, 157-165.
 
5.
Van Eekelen H.A.M., 1980, Isotropic yield surface in three dimensions for use in soil mechanics, International Journal for Numerical and Analytical Methods, 4, 89-101, DOI: 10.1002/nag.1610040107.
 
6.
Ehlers W., 1995, A single-surface yield function for geomaterials, Archives of Applied Mechanics, 65, 246-259, DOI: 10.1007/BF00805464.
 
7.
Gabet T., Malecot Y., Daudeville L., 2008, Triaxial behaviour of concrete under high stress: Influence of the loading path on compaction and limit states, Cement and Concrete Research, 38, 403-412, DOI: 10.1016/j.ijsolstr.2008.10.015.
 
8.
Gudehus G., 1973, Elastoplastic constitutive relations for sand (in German), Ingenieur-Archiv, 42, 151-169.
 
9.
Jemioło S., Szwed A., 1999, On application of convex functions to model failure of isotropic materials. Proposition of yield conditions for metals (in Polish), Prace Naukowe Politechniki Warszawskiej, 133, 5-51.
 
10.
Kupfer H., Hilsdorf H.K., Rusch H., 1969, Behavior of concrete under biaxial stresses, ACI Journal, 66, 656-666.
 
11.
Lubliner J., Oliver J., Oller S., Onate E., 1989, A plastic-damage model for concrete, International Journal of Solids and Structures, 25, 299-326, DOI: 10.1016/0020-7683(89)90050-4.
 
12.
Mills L.L., Zimmerman R.M., 1970, Compressive strength of plain concrete under multiaxial loading conditions, ACI Journal, 67, 802-807.
 
13.
Ottosen N.S., 1977, A failure criterion for concrete, Journal of the Engineering Mechanics Division, 103, 527-535.
 
14.
Podgórski J., 1984, Limit state condition and dissipation function for isotropicmaterials, Archives of Mechanics, 36, 323-342.
 
15.
Raniecki B., Mróz Z., 2008, Yield or martensic phase transformation condition and dissipation functions for isotropic pressure insensitive alloys exhibiting SD effects, Acta Mechanica, 195, 81-102, DOI: 10.1007/s00707-007-0544-7.
 
16.
Szwed A., Kamińska I., 2017, Modification of concrete damaged plasticity model. Part I: Modified plastic potential, MATEC Web of Conferences, 117, 00160, DOI: 10.1051/matecconf/201711700160.
 
17.
Szwed A., Kamińska I., 2019, Yield criteria for concrete built of deviatoric and meridional shape functions, [In:] Theoretical Foundations of Civil Engineering, IX, Mechanics of Materials and Structures, A. Szwed, I. Kamińska (Edit.), 85-94, Publishing House of Warsaw University of Technology.
 
18.
Willam K.J., Warnke E.P., 1975, Constitutive models for triaxial behavior of concrete, Proceedings of the International Association for Bridge and Structural Engineering, 19, 1-30.
 
eISSN:2543-6309
ISSN:1429-2955