ARTICLE
Turbulent coherent structures in thermal vortex rings
 
More details
Hide details
1
Faculty of Physics, University of Warsaw, Warsaw, Poland
 
 
Submission date: 2024-11-30
 
 
Final revision date: 2025-05-20
 
 
Acceptance date: 2025-07-31
 
 
Online publication date: 2025-11-07
 
 
Corresponding author
Paweł Jędrejko   

Faculty of Physics, University of Warsaw, ul. Krakowskie Przedmieście 26/28, 00-927, Warsaw, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The study concerns self-similar structures that emerge during the process of the thermal vortex ring formation. A qualitative explanation of their origin is provided based on the repetitive Kelvin–Helmholtz instability in multiple scales. This phenomenon is found to invert the turbulent energy cascade near the buoyancy interface. To quantify the associated mixing, the fractal dimension of the interface is also computed.
REFERENCES (15)
1.
Bishop, C.J., & Peres, Y. (2017). Fractals in probability and analysis. Cambridge Studies in Advanced Mathematics, vol. 162. Cambridge University Press.
 
2.
Davidson, P.A. (2015). Turbulence: An introduction for scientists and engineers (2nd ed.). Oxford University Press.
 
3.
Dynnikova, G.Ya. (2009). Fast technique for solving the N-body problem in flow simulation by vortex methods. Computational Mathematics and Mathematical Physics, 49 (8), 1389–1396. https://doi.org/10.1134/S09655....
 
4.
Jędrejko, P., Yano, J.-I., & Wacławczyk, M. (2024). A Lagrangian approach to thermal vortex rings simulation in high Re and high Pe limit. Under consideration in Theoretical and Computational Fluid Dynamics.
 
5.
Krasny, R. (1986). Desingularization of periodic vortex sheet roll-up. Journal of Computational Physics, 65 (2), 292–313. https://doi.org/10.1016/0021-9....
 
6.
Liebovitch, L.S., & Tibor, T. (1989). A fast algorithm to determine fractal dimensions by box counting. Physics Letters A, 141 (8–9), 386–390. https://doi.org/10.1016/0375-9....
 
7.
Malinowski, Sz., & Zawadzki, I. (1993). On the surface of clouds. Journal of the Atmospheric Sciences, 50 (1), 5–13. https://doi.org/10.1175/1520-0...
 
8.
Morrison, H., Jeevanjee, N., Lecoanet, D., & Peters, J.M. (2023). What controls the entrainment rate of dry buoyant thermals with varying initial aspect ratio? Journal of the Atmospheric Sciences, 80 (11), 2711–2728. https://doi.org/10.1175/JAS-D-....
 
9.
Nitsche, M., & Krasny, R. (1994). A numerical study of vortex ring formation at the edge of a circular tube. Journal of Fluid Mechanics, 276, 139–161. https://doi.org/10.1017/S00221....
 
10.
Sherwood, S.C., Hernández-Deckers, D., Colin, M., & Robinson, F. (2013). Slippery thermals and the cumulus entrainment paradox. Journal of the Atmospheric Sciences, 70 (8), 2426–2442. https://doi.org/10.1175/JAS-D-....
 
11.
Shub, M. (2005). What is ...a horseshoe?. Notices of the American Mathematical Society, 52 (5), 516–517. https://www.ams.org/notices/20...
 
12.
Sohn, S.-I. (2014). Two vortex-blob regularization models for vortex sheet motion. Physics of Fluids, 26 (4), Article 044105. https://doi.org/10.1063/1.4872....
 
13.
Vallis, G.K. (2006). Atmospheric and oceanic fluid dynamics. Fundamentals and large-scale circulation (2nd ed.). Cambridge University Press. https://doi.org/10.1017/978110...
 
14.
Yano, J.-I. (2023). Geophysical convection dynamics. Elsevier.
 
15.
Yano, J.-I., & Morrison, H. (2024). Thermal vortex ring: Vortex-dynamics analysis of a high-resolution simulation. Journal of Fluid Mechanics, 991, A18. https://doi.org/10.1017/jfm.20....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top