ARTICLE
Simulated calculation and application of annular pressure loss for deep slim-hole sidetracking horizontal well
,
 
,
 
Yi HOU 1
,
 
,
 
,
 
 
 
 
More details
Hide details
1
Production Technology Research Institute, PetroChina Jidong Oilfield Company, Tangshan, China
 
2
School of Petroleum Engineering, China University of Petroleum (Huadong), Qingdao, China
 
 
Submission date: 2024-09-17
 
 
Final revision date: 2025-06-22
 
 
Acceptance date: 2025-07-31
 
 
Online publication date: 2025-10-20
 
 
Corresponding author
Weian HUANG   

China University of Petroleum (Huadong), School of Petroleum Engineering, 266580, Qingdao, China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This article analyzes the influence of different displacement (5 L/s–17 L/s (liter per second)) and rotational speed (0 rev/min–120 rev/min) conditions on the annular pressure loss of a slim hole under different eccentricity (0 %–40 %) models through simulation methods and the difference in the annular pressure drop gradient at different drilling tool combinations. Based on numerical simulation, results fitted the multi-factor dimensionless annular pressure drop gradient factor. The accuracy of the fitted factors was verified by calculating the pump pressure of a horizontal wellbore section based on the historical data of the SY-3 well with an error of less than 10 %.
REFERENCES (26)
1.
Bao, F.D., & Weng, X.H. (2000). The software solving of multiple regression and correlation analysis and case explanation (in Chinese). Journal of Applied Statistics and Management, 20 (5), 56–61.
 
2.
Cartalos, U., King, I., Dupuis, D., & Sagot, A. (1996). Field validated hydraulic model predictions give guidelines for optimal annular flow in slimhole drilling. In IADC/SPE Drilling Conference (Article SPE-35131-MS). Society of Petroleum Engineers. https://doi.org/10.2118/35131-....
 
3.
Dawson, R. (1984). Drill pipe buckling in inclined holes. Journal of Petroleum Technology, 36 (10), 1734–1738. https://doi.org/10.2118/11167-....
 
4.
Delwiche, R.A., Lejeune, M.W.D., Mawet, P.F.B.N., & Vignette, R. (1992). Slimhole drilling hydraulics. In SPE Annual Technical Conference and Exhibition (Article SPE-24596-MS). Society of Petroleum Engineers. https://doi.org/10.2118/24596-....
 
5.
Enfis, M., Ahmed, R., & Saasen, A. (2011). The hydraulic effect of tool-joint on annular pressure loss. In SPE Production and Operations Symposium (Article SPE-142282-MS). Society of Petroleum Engineers. https://doi.org/10.2118/142282....
 
6.
Haciislamoglu, M., & Cartalos, U. (1994). Practical pressure loss predictions in realistic annular geometries. In SPE Annual Technical Conference and Exhibition (Article SPE-28304-MS). Society of Petroleum Engineers. https://doi.org/10.2118/28304-....
 
7.
Hansen, S.A., Rommetveit, R., Sterri, N., Aas, B., & Merlo, A. (1999). A new hydraulics model for slim hole drilling applications. In SPE/IADC Middle East Drilling Technology Conference (Article SPE-57579-MS). Society of Petroleum Engineers. https://doi.org/10.2118/57579-....
 
8.
Hemphill, T., & Ravi, K. (2005). Calculation of drillpipe rotation effects on fluids in axial flow: An engineering approach. In SPE Annual Technical Conference and Exhibition (Article SPE-97158-MS). Society of Petroleum Engineers. https://doi.org/10.2118/97158-....
 
9.
Juvkam-Wold, H.C., & Wu, J. (1992). Casing deflection and centralizer spacing calculations. Society of Petroleum Engineers Drilling Engineering, 7 (4), 268–274. https://doi.org/10.2118/21282-....
 
10.
Kelessidis, V.C., Dalamarinis, P., & Maglione, R. (2011). Experimental study and predictions of pressure losses of fluids modeled as Herschel–Bulkley in concentric and eccentric annuli in laminar, transitional and turbulent flows. Journal of Petroleum Science and Engineering, 77 (3–4), 305–312. https://doi.org/10.1016/j.petr....
 
11.
Khatibi, M., Wiktorski, E., Sui, D., & Time, R.W. (2018). Experimental study of frictional pressure loss for eccentric drillpipe in horizontal wells. In IADC/SPE Asia Pacific Drilling Technology Conference and Exhibition (Article SPE-191046-MS). Society of Petroleum Engineers. https://doi.org/10.2118/191046....
 
12.
Letelier, M.F., Siginer, D.A., & Hinojosa, C.B. (2017). On the physics of viscoplastic fluid flow in non-circular tubes. International Journal of Non-Linear Mechanics, 88, 1–10. https://doi.org/10.1016/j.ijno....
 
13.
Lubinski, L., & Althouse, W.S. (1962). Helical buckling of tubing sealed in packers. Journal of Petroleum Technology, 14 (6), 665–670. https://doi.org/10.2118/178-PA.
 
14.
McCann, R.C., Quigley, M.S., Zamora, M., & Slater, K.S. (1995). Effects of high-speed pipe rotation on pressures in narrow annuli. Society of Petroleum Engineers Drilling & Completion, 10 (2), 96–103. https://doi.org/10.2118/26343-....
 
15.
Miao, H., Dokhani, V., Ma, Y., & Zhang, D. (2023). Numerical modeling of laminar and turbulent annular flows of power-law fluids in partially blocked geometries. Results in Engineering, 17, Article 100930. https://doi.org/10.1016/j.rine....
 
16.
Mielke, P.W., & Berry, K.J. (2002). Multivariate multiple regression analyses: A permutation method for linear models. Psychological Reports, 91 (1), 3–9. https://doi.org/10.2466/pr0.20....
 
17.
Reed, T.D., & Pilehvari, A.A. (1993). A new model for laminar, transitional and turbulent flow of drilling muds. In SPE Production Operations Symposium (Article SPE-25456-MS). Society of Petroleum Engineers. https://doi.org/10.2118/25456-....
 
18.
Resell, Å.Aa., Giljarhus, K.E.T., Mihai, R., & Skadsem, H.J. (2025). Fluid forces in eccentric annular geometries with rotating and orbiting inner cylinder. Physics of Fluids, 37 (4), Article 047158. https://doi.org/10.1063/5.0262....
 
19.
Shi, K., & Zhang, S. (2025). Turbulent transport in annular Poiseuille flow with axial rotation. Physics of Fluids, 37 (3), Article 035116. https://doi.org/10.1063/5.0257....
 
20.
Singh, R., Ahmed, R., Karami, H., Nasser, M., & Hussein, I. (2021). CFD analysis of turbulent flow of power-law fluid in a partially blocked eccentric annulus. Energies, 14 (3), Article 731. https://doi.org/10.3390/en1403....
 
21.
Song, Z.C., Wang, G.C., Guan, Z.C., & Zou, D.Y. (2004). A method for computing the circulating pressure loss in slim hole annulus (in Chinese). Petroleum Drilling Techniques, 32 (6), 11–12.
 
22.
Sotoudeh, S., Frigaard, I.A. (2024). Computational study of Newtonian laminar annular horizontal displacement flows with rotating inner cylinder. Physics of Fluids, 36 (8), Article 083113. https://doi.org/10.1063/5.0222....
 
23.
Tian, J., Song, H., Yang, Y., Mao, L., & Song, J. (2024). Dynamic buckling characteristics of drill string in horizontal wells. International Journal of Structural Stability and Dynamics, 24 (11), Article 2450121. https://doi.org/10.1142/S02194....
 
24.
Tian, Y., Jiang, D.L., Ma, C.H., Xu, Y.L., Yu, X.D., & Song, X.C. (2022). Numerical simulation of the effects of eccentric rotation of the drill string on annular frictional pressure drop (in Chinese). Petroleum Drilling Techniques, 50 (5), 42–49. https://doi.org/10.11911/syztj....
 
25.
Vaughn, R.D. (1965). Axial laminar flow of non-Newtonian fluids in narrow eccentric annuli. Society of Petroleum Engineers Journal, 5 (4), 277–280. https://doi.org/10.2118/1138-P....
 
26.
Vieira Neto, J.L., Martins, A.L., Ataíde, C.H., & Barrozo, M.A.S. (2014). The effect of the inner cylinder rotation on the fluid dynamics of non-Newtonian fluids in concentric and eccentric annuli. Brazilian Journal of Chemical Engineering, 31 (4), 829–838. https://doi.org/10.1590/0104-6....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top