ARTICLE
Transient vibration of a fractional viscoelastic cantilever beam with an eccentric mass element at the end
 
 
More details
Hide details
1
Warsaw Univerity of Thechnology, Warsaw, Poland
 
 
Submission date: 2023-12-18
 
 
Final revision date: 2024-03-08
 
 
Acceptance date: 2024-03-20
 
 
Online publication date: 2024-04-25
 
 
Publication date: 2024-04-30
 
 
Corresponding author
Jan Freundlich   

Faculty of Automotive and Construction Machinery Egineering, Warswaw University of Technology, Narbutta 84, 02-524, Warszawa, Poland
 
 
Journal of Theoretical and Applied Mechanics 2024;62(2):421-434
 
KEYWORDS
TOPICS
ABSTRACT
The work focuses on the transient forced vibration of a cantilever beam with a rigid eccentric mass element attached at the free end. The Euler-Bernoulli beam theory and the viscoelastic fractional Kelvin-Voigt material model are adopted. The equation of motion of the beam is derived using Hamilton’s principle. The first eigenfunction of linear vibrations is used as an approximate solution for the nonlinear vibrations. The equations of motion of the system are solved numerically. The impact of the order of the fractional derivative on the beam transient linear and nonlinear vibrations is studied.
 
REFERENCES (25)
1.
Caputo M., 1967, Linear models of dissipation whose Q is almost frequency independent-II, Geophysical Journal of Royal Astronomical Society, 13, 529-539.
 
2.
Chapra S.C., Canale R.P., 2010, Numerical Methods for Engineers, McGraw Hill, Boston.
 
3.
Diethelm K., 2010, The Analysis of Fractional Differential Equations, Lecture Notes in Mathematics, Vol. 2004, Springer, Berlin.
 
4.
Diethelm K., Ford N.J., Freed A.D., Luchko Y., 2005, Algorithms for the fractional calculus: A selection of numerical methods, Computer Methods in Applied Mechanics and Engineering, 194, 743-773.
 
5.
Erturk A., Inman D.J., 2011, Piezoelectric Energy Harvesting, John Wiley and Sons, The Atrium.
 
6.
Freundlich J., 2016, Dynamic response of a simply supported viscoelastic beam of a fractional derivative type to a moving force load, Journal of Theoretical and Applied Mechanics, 54, 4, 1433-1445.
 
7.
Freundlich J., 2019, Transient vibrations of a fractional Kelvin-Voigt viscoelastic cantilever beam with a tip mass and subjected to a base excitation, Journal of Sound and Vibration, 438, 99-115.
 
8.
Freundlich J., 2021, Transient vibrations of a fractional Zener viscoelastic cantilever beam with a tip mass, Meccanica, 56, 1971-1988.
 
9.
Gürgöze M., Zeren S., 2011, The influences of both offset and mass moment of inertia of a tip mass on the dynamics of a centrifugally stiffened visco-elastic beam, Meccanica, 46, 1401-1412.
 
10.
Mainardi F., Spada G., 2011, Creep, relaxation and viscosity properties for basic fractional models in rheology, The European Physical Journal Special Topics, 193, 133-160.
 
11.
Malendowski M., Sumelka W., Gajewski T., Studziński R., Peksa P., Sielicki P.W., 2023, Prediction of high-speed debris motion in the framework of time-fractional model: theory and validation, Archives of Civil and Mechanical Engineering, 23, 46, 1-21.
 
12.
Markiewicz M., 1995 Optimum dynamic characteristics of Stockbridge dampers for dead-end spans, Journal of Sound Vibration, 188, 243-256.
 
13.
Meirovitch L., 1967, Analytical Methods in Vibrations, Macmillan, New York.
 
14.
Podlubny I., 1999, Fractional Differential Equations, Academic Press, San Diego.
 
15.
Rama Bhat B., Wagner H., 1976, Natural frequencies of a uniform cantilever with a tip mass slender in the axial direction, Journal of Sound and Vibration, 45, 304-307.
 
16.
Rossikhin Y.A., Shitikova M.V., 1997, Application of fractional derivatives to the analysis of damped vibrations of viscoelastic single mass systems, Acta Mechanica, 120, 109-125.
 
17.
Rossikhin Y.A., Shitikova M.V., 2009, Application of fractional calculus for dynamic problems of solid mechanics: Novel trends and recent results, Applied Mechanics Reviews, 63, 1, 010801-1-010801-51.
 
18.
Seidel H., Csepregi L., 1984, Design optimization for cantilever-type accelerometers, Sensors and Actuators, 6, 2, 81-92.
 
19.
Shen Y., Hua J., Hou Q., Xia X., Liu Y., Yang X., 2022, Performance analysis of the fractional-order vehicle mechatronic ISD suspension with parameter perturbation, Journal of Theoretical and Applied Mechanics, 60, 1, 141-152.
 
20.
Sumelka W., 2016, On geometrical interpretation of the fractional strain concept, Journal of Theoretical and Applied Mechanics, 54, 2, 671-674.
 
21.
Sumelka W., Łuczak B., Gajewski T., Voyiadjis G.Z., 2020, Modelling of AAA in the framework of time-fractional damage, International Journal of Solids and Structures, 206, 30-42.
 
22.
Suzuki J.L., Kharazmi E., Varghaei P., Naghibolhosseini M., Zayernouri M., 2021, Anomalous nonlinear dynamics behavior of fractional viscoelastic beams, Journal of Computational and Nonlinear Dynamics, 16, 111004-1-11.
 
23.
Tayel I.M., Hassan A.F., 2019, Heating a thermoelastic half space with a surface absorption pulsed laser using fractional order theory of thermoelasticity, Journal of Theoretical and Applied Mechanics, 57, 2, 489-500.
 
24.
Torvik P.J., Bagley R.L., 1984, On the appearance of the fractional derivative in the behavior of real materials, Journal of Applied Mechanics, 51, 294-298.
 
25.
Yang H., 2017, Vibration control for a cantilever beam with an eccentric tip mass using a piezoelectric actuator and sensor, International Journal of Acoustics and Vibration, 22, 1, 84-91.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top