We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.
Exploitation of bucket wheel excavators (BWEs) is accompanied by an increase of mass
due to transport and adherence of a large amount of the material. Technical regulations
do not account for the dynamic behaviour of BWEs. Such problems are analysed as quasi-
-static. A procedure and results of investigation of the influence of masses of the bucket
wheel (BW) incrustation and soil in a blocked BW chute on the superstructure response are
presented. Analysis of sensitivity of dynamic characteristics and the response to adherence
of the material is conducted. The method and results can be used in the design stages of
new and in reconstructions of obsolete BWEs.
REFERENCES(28)
1.
Arsić M., Bošnjak S., Zrnić N., Sedmak A., Gnjatović N., 2011, Bucket wheel failure caused by residual stresses in welded joints, Engineering Failure Analysis, 18, 2, 700-712.
AS4324.1, 1995, Mobile equipment for continuous handling of bulk materials. Part 1 – General requirements for the design of steel structures, Standards Australia, Homebush.
Bartelmus W., Zimroz R., 2009, Vibration condition monitoring of planetary gearbox under varying external load, Mechanical Systems and Signal Processing, 23, 246-257.
Bošković S., Jovančić P., Ignjatović D., Rakićević B., Maneski T., 2015, Vibration as deciding parameter during revitalization process for replacing the bucket wheel drive, Journal of Vibroengineering, 17, 1, 24-325.
Bošnjak S.M., Oguamanam D.C.D., Zrnić N.., 2015, The influence of constructive parameters on response of bucket wheel excavator superstructure in the out-of-resonance region, Archives of Civil and Mechanical Engineering, 15, 4, 977-985.
Bošnjak S., Gnjatović N., 2016, The influence of geometric configuration on response of the bucket wheel excavator superstructure, FME Transactions, 44, 3, 313-323.
Brkić A., Maneski T., Ignjatović D., Jovančić P., Spasojević Brkić V., 2014, Diagnostics of bucket wheel excavator discharge boom dynamic performance and its reconstruction, Maintenance and Reliability, 16, 2, 188-197.
Brusa E., Morsut S., Bosso N., 2014, Dynamic behaviour and prevention of the damage of material of the massive hammer of the scrap shredding machine, Meccanica, 49, 3, 575-586.
DIN 22261-2, 2016, Excavators, Stackers and Auxiliary Equipment in Brown Coal Open Cut Mines. Part 2 – Calculation Principals, German Institute for Standardization, Berlin.
Gnjatović N., 2016, Influence of constructional parameters and parameters of excitation on response of the bucket wheel excavator with two masts in the out-of-resonance region (in Serbian), Ph.D. Thesis, University of Belgrade, Faculty of Mechanical Engineering, Belgrade.
Gottvald J., 2010, The calculation and measurement of the natural frequencies of the bucket wheel excavator SchRs 1320/4x30, Transport, 25, 3, 269-277.
Huss W., 2014, An application of statistical tools in the identification of the transient vibrations of bucket-wheel excavators under random loads, [In:] Advances in Condition Monitoring of Machinery in Non-Stationary Operations, G. Dalpiaz et al. (Eds.), Springer-Verlag, Berlin Heidelberg, 545-555.
Karray M., Feki N., Khabou M.T., Chaari F., Haddar M., 2017, Modal analysis of gearbox transmission system in bucket wheel excavator, Journal of Theoretical and Applied Mechanics, 55, 1, 253-264.
Pietrusiak D., 2017, Evaluation of large-scale load-carrying structures of machines with the application of the dynamic effects factor, Maintenance and Reliability, 19, 4, 542-551.
Pietrusiak. D, Smolnicki. T, Stańco M., 2017, The influence of superstructure vibrations on operational loads in the undercarriage of bulk material handling machine, Archives of Civil and Mechanical Engineering, 17, 855-862.
Rusiński E., Czmochowski J., Moczko P., Kowalczyk M., Pietrusiak D., Przybyłek G., Smolnicki T., Stańco M., 2015, Assessment of the Technical Condition of Mining Machines (in Polish), Oficyna Wydawnicza Politechniki Wrocławskiej, Wroclaw.
Rusiński E., Dragan S., Moczko P., Pietrusiak D., 2012, Implementation of experimental method of determining modal characteristics of surface mining machinery in the modernization of the excavating unit, Archives of Civil and Mechanical Engineering, 12, 4, 471-476.
Schlecht B., 2014, Investigation and Optimization of the Dynamic Behaviour of the Bucket Wheel Drives (in German), Final report of the research project 16575 BR funded by the Federal Ministry for Economic Affairs and Energy of Germany.