ARTICLE
Error measures and solution artifacts of the harmonic balance method on the example of the softening Duffing oscillator
 
More details
Hide details
1
Technische Universität Berlin, Institut für Mechanik, Berlin, Germany
 
2
Hochschule Trier, Institut für Betriebs- und Technologiemanagement, Trier, Germany
 
 
Submission date: 2024-02-14
 
 
Acceptance date: 2024-02-29
 
 
Online publication date: 2024-04-28
 
 
Publication date: 2024-04-30
 
 
Corresponding author
Hannes Dänschel   

Institut für Mechanik, Technische Universität Berlin, Germany
 
 
Journal of Theoretical and Applied Mechanics 2024;62(2):435-455
 
KEYWORDS
TOPICS
ABSTRACT
The Harmonic BalanceMethod (HBM) is one of the most often applied semi-analytic approximation methods in nonlinear dynamics. In earlier publications, the two coauthors already observed for the softening Duffing oscillator and other systems that especially low ansatz order HBM solutions may contain larger errors for some solution branches, and called this artifacts. In the present work, this problem is studied systematically with a new implementation of the method and applied again to the example of the softening Duffing oscillator. In conjunction with a mathematical definition for HBM artifacts we discuss and present possible a posteriori and a priori HBM error measures.
REFERENCES (28)
1.
ALT H., GODAU M., 1995, Computing the Fréchet distance between two polygonal curves, Inter­national Journal of Computational Geometry and Applications, 5, 75-91.
 
2.
BASU S., POLLACK R., ROY M., 2006, Algorithms in Real Algebraic Geometry, 2nd ed., Springer Berlin, Heidelberg.
 
3.
DE TERÁN F., DOPICO F.M., PÉREZ J., 2013, Condition numbers for inversion of Fiedler companion matrices, Linear Algebra and its Applications, 439, 4 944981.
 
4.
DEUFLHARD P., 2011, Newton Methods for Nonlinear problems: Affine Invariance and Adaptive Algoirithms, Springer Series in Computational Mathematics, Springer Berlin, Heidelberg.
 
5.
DEUFLHARD P., FIEDLER B., KUNKEL P., 1987, Efficient numerical pathfollowing beyond critical points, SIAM Journal on Numerical Analysis, 24, 4, 912-927.
 
6.
DEUFLHARD P., HOHMANN A., 2019, Eine algorithmisch orientierte Einfuhrung, De Gruyter, Berlin, Boston.
 
7.
DUFFING G., 1918, Erzwungene Schwingungen bei veränderlicher Eigenfrequenz und ihre technische Bedeutung, Samlung Vieweg.
 
8.
EDELMAN A., MURAKAMI H., 1995, Polynomial roots from companion matrix eigenvalues, Mathematics of Computation, 64, 763-776.
 
9.
FERRI A.A., LEAMY M.J., 2009, Error estimates for harmonic-balance solutions of nonlinear dynamical systems, Collection of Technical Papers - AIAA/ ASME/ ASCE/ AHS/ ASC Structures, Structural Dynamics and Materials Conference, May, 115.
 
10.
FIGUEIRA J.P., 2023, Discret-frechet, https://github.com/joaofig/dis....
 
11.
GARCÍA-SALDAÑA J.D., GASULL A., 2013, A theoretical basis for the Harmonic Balance Method, Journal of Differential Equations, 254, 1, 67-80.
 
12.
HAGEDORN P., 1981, Non-linear Oscillations, Clarendon Press, Oxford and New York.
 
13.
HERMAN R.L., 2016, An Introduction to Fourier Analysis, CRC Press.
 
14.
HOLMES P.J., RAND D.A., 1976, The bifurcations of Duffing's equation: An application of catastrophe theory, Journal of Sound and Vibration, 44, 2, 237-253.
 
15.
KOGELBAUER F., BREUNUNG T., 2021, When does the method of harmonic balance give a correct prediction for mechanical systems, Applicable Analysis, 102, 2, 425-443.
 
16.
KOVACIC I., BRENNAN M.J., 2011, The Duffing Equation: Nonlinear Oscillators and their Phenomena, Wiley.
 
17.
KRACK M., GROSS J., 2019, Harmonic Balance for Nonlinear Vibration Problems, Springer.
 
18.
LENTZ L., VON WAGNER U., 2020, Avoidance of artifacts in harmonic balance solutions for nonlinear dynamical systems, Journal of Theoretical and Applied Mechanics, 58, 2, 307-316.
 
19.
NAYFEH A.H., MOOK D.T., 1979, Nonlinear Oscillations, Wiley.
 
20.
NOVAK S., FREHLICH R.G., 1982, Transition to chaos in the Duffing oscillator, Physical Review A,26, 6, 3660-3663.
 
21.
STROGATZ S.H., 1994, Nonlinear Dynamics and Chaos, Westview Press.
 
22.
UEDA Y., 1991, Survey of regular and chaotic phenomena in the forced Duffing oscillator, Chaos, Solitons and Fractals, 1, 3, 199-231.
 
23.
URABE M., 1965, Galerkin's procedure for nonlinear periodic systems, Archive for Rational Me­chanics and Analysis, 20, 120-152.
 
24.
VON WAGNER U., LENTZ L., 2016, On some aspects of the dynamic behavior of the softening Duffing oscillator under harmonic excitation, Archive of Applied Mechanics, 86, 1383-1390.
 
25.
VON WAGNER U., LENTZ L., 2018, On artifact solutions of semi-analytic methods in nonlinear dynamics, Archive of Applied Mechanics, 88, 1713-1724.
 
26.
VON WAGNER U., LENTZ L., 2019, On the detection of artifacts in Harmonic Balance solutions of nonlinear oscillators, Applied Mathematical Modelling, 65, 408-414.
 
27.
WOIWODE L., BALAJI N.N., KAPPAUF J., TUBITA F., GUILLOT L., et al., 2020, Comparison of ANM and predictor-corrector method to continue solutions of harmonic balance equations, [In:] Conference Proceedings of the Society for Experimental Mechanics Series.
 
28.
WOIWODE L., KRACK M., 2023, Are Chebyshev-based stability analysis and Urabe's error bound useful features for Harmonic Balance?, Mechanical Systems and Signal Processing, 194, 110265.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top