Sensitivity analysis of multiple eigenvalues and associated eigenvectors of quadratic eigenproblem
 
 
More details
Hide details
1
Faculty of Civil Engineering and Resource Management, AGH University of Cracow, Cracow, Poland
 
 
Submission date: 2024-11-21
 
 
Final revision date: 2025-02-20
 
 
Acceptance date: 2025-03-19
 
 
Online publication date: 2025-09-22
 
 
Corresponding author
Henryk Ciurej   

Faculty of Civil Engineering and Resource Management, Akademia Górniczo-Hutnicza im. Stanisława Staszica w Krakowie, Al. Mickiewicza 30, 30-059 Kraków, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
The article is focused on the sensitivity of eigenvalues and eigenvectors in a quadratic eigenvalue problem with real matrices defining the problem under consideration and under the strong assumption that these matrices form a non-defective operator. The particular interest is the case of multiple eigenvalues and associated eigenvectors. Generally in such a case derivatives in the Fréchet sense do not exist, but only in the Gâteaux sense. The formulas of the directional differential in the closed matrix form were derived. A numerical example is shown.
REFERENCES (25)
1.
Andrew, A.L., Chu, K.-W.E., & Lancaster, P. (1993). Derivatives of eigenvalues and eigenvectors of matrix functions. SIAM Journal on Matrix Analysis and Applications, 14 (4), 903–926. https://doi.org/10.1137/061406....
 
2.
Balakrishnan, A.V. (1976). Applied functional analysis. Applications of mathematics 3. Springer.
 
3.
Choi, K.-M., Jo, H.-K., Kim, W.-H., & Lee, I.-W. (2004). Sensitivity analysis of non-conservative eigensystems. Journal of Sound and Vibration, 274 (3–5), 997–1011. https://doi.org/10.1016/S0022-....
 
4.
Day, D.M., & Walsh, T.F. (2007). Quadratic eigenvalue problems. Technical Report SAND2007-2072, Sandia National Laboratories. https://www.osti.gov/servlets/...
 
5.
Garcia, S.R., & Horn, R.A. (2017). A second course in linear algebra. Cambridge Mathematical Textbooks. Cambridge University Press.
 
6.
Gekeler, E.W. (2008). Mathematical methods for mechanics. A handbook with MATLAB experiments. Springer-Verlag, Berlin.
 
7.
Hammarling. S., Munro, Ch.J., & Tisseur, F. (2013). An algorithm for the complete solution of quadratic eigenvalue problems. ACM Transactions on Mathematical Software, 39 (3), Article 18. https://doi.org/10.1145/245015....
 
8.
Horn, R.A., & Johnson, Ch.R. (2013). Matrix analysis (2nd ed.). Cambridge University Press, New York.
 
9.
Kim, D.-O., Kim, J.-T., Oh, J.-W., & Lee, I.-W. (1999a). Natural frequency and mode shape sensitivities of non-proportionally damped systems: Part I, Distinct natural frequencies. Journal of the Computational Structural Engineering Institute of Korea, 12 (1), 95–102.
 
10.
Kim, D.-O., Kim, J.-T., Park, S.-K., & Lee, I.-W. (1999b). Natural frequency and mode shape sensitivities of non-proportionally damped systems: Part II, Multiple natural frequencies. Journal of the Computational Structural Engineering Institute of Korea, 12 (1), 103–109.
 
11.
Krog, L.A., & Olhoff, N. (1995). Topology optimization of plate and shell structures with multiple eigenfrequencies. In N. Olhoff, & G.I.N. Rozvany (Eds.), Structural and multidisciplinary optimization: Proceedings of The First World Congress of Structural and Multidisciplinary Optimization (pp. 675-682). Pergamon Press.
 
12.
Lancaster, P. (2013). Stability of linear gyroscopic systems: A review. Linear Algebra and Its Applications, 439 (3), 686–706. https://doi.org/10.1016/j.laa.....
 
13.
Lancaster, P., & Zaballa, I. (2009). Diagonalizable quadratic eigenvalue problems. Mechanical Systems and Signal Processing, 23 (4), 1134–1144. https://doi.org/10.1016/j.ymss....
 
14.
Lee, I.-W., Kim, D.-O., & Jung, G.-H. (1999a). Natural frequency and mode shape sensitivities of damped systems: Part I, Distinct natural frequencies. Journal of Sound and Vibration, 223 (3), 399–412. https://doi.org/10.1006/jsvi.1....
 
15.
Lee, I.-W., Kim, D.-O., & Jung, G.-H. (1999b). Natural frequency and mode shape sensitivities of damped systems: Part II, Multiple natural frequencies. Journal of Sound and Vibration, 223 (3), 413–424. https://doi.org/10.1006/jsvi.1....
 
16.
Leung, A.Y.T. (1993). Dynamic stiffness and substructures. Springer–Verlag.
 
17.
Łasecka-Plura, M. (2023). A comparative study of the sensitivity analysis for systems with viscoelastic elements. Archive of Mechanical Engineering, 70 (1), 5–25. https://doi.org/10.24425/ame.2....
 
18.
Łasecka-Plura, M. (2024). Comprehensive sensitivity analysis of repeated eigenvalues and eigenvectors for structures with viscoelastic elements. Acta Mechanica, 235 (8), 5213–5238. https://doi.org/10.1007/s00707....
 
19.
Martinez-Agirre, M., & Elejabarrieta, M.J. (2011). Higher order eigensensitivities-based numerical method for the harmonic analysis of viscoelastically damped structures. International Journal for Numerical Methods in Engineering, 88 (12), 1280–1296. https://doi.org/10.1002/nme.32....
 
20.
Olhoff, N., Krog, L.A., & Lund, E. (1995). Optimization of multimodal structural eigenvalues. In N. Olhoff, & G.I.N. Rozvany (Eds.), Structural and multidisciplinary optimization: Proceedings of The First World Congress of Structural and Multidisciplinary Optimization (pp. 701-708). Pergamon Press.
 
21.
Phuor, T., & Yoon, G.H. (2023). Eigensensitivity of damped system with distinct and repeated eigenvalues by chain rule. International Journal for Numerical Methods in Engineering, 124 (21), 4687–4717. https://doi.org/10.1002/nme.73....
 
22.
Seyranian, A.P., Lund, E., & Olhoff, N. (1994). Multiple eigenvalues in structural optimization problems. Structural Optimization, 8 (4), 207–227. https://doi.org/10.1007/BF0174....
 
23.
Tisseur, F., & Meerbergen, K. (2001). The quadratic eigenvalue problem. SIAM Review, 43 (2), 235–286. https://doi.org/10.1137/S00361....
 
24.
Wang, P., & Dai, H. (2015). Calculation of eigenpair derivatives for asymmetric damped systems with distinct and repeated eigenvalues. International Journal for Numerical Methods in Engineering, 103 (7), 501–515. https://doi.org/10.1002/nme.49....
 
25.
Xu, Z., & Wu, B. (2008). Derivatives of complex eigenvectors with distinct and repeated eigenvalues. International Journal for Numerical Methods in Engineering, 75 (8), 945–963. https://doi.org/10.1002/nme.22....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top