Probabilistic estimation of the dynamic gait parameters
 
More details
Hide details
1
Institute of Applied Mechanics, Poznan University of Technology, Poznan, Poland
 
2
Institute of Structural Analysis, Poznan University of Technology, Poznan, Poland
 
3
Faculty of Civil Engineering, Architecture & Environmental Engineering, Lodz University of Technology, Lodz, Poland
 
 
Submission date: 2024-12-08
 
 
Final revision date: 2025-02-18
 
 
Acceptance date: 2025-03-06
 
 
Online publication date: 2025-09-10
 
 
Corresponding author
Michał Guminiak   

Wydział Inżynierii Lądowej i Transportu, Instytut Analizy Konstrukcji, Zakład Mechaniki Budowli, Politechnika Poznańska, Piotrowo 5, 60-965, Poznań, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study presents an estimation of the dynamic parameters of gait with a random approach. The data necessary for random analysis was obtained through laboratory tests. The study was conducted on a group of healthy people aged 20–25, without diagnosed musculoskeletal diseases. It consisted in walking along a several-metre-long path at free speed and recording the ground reaction forces (GRF) for both limbs using dynamometric platforms. On this basis, the basic dynamic parameters of gait, such as maxima and local minima of the stance phase were determined, and then they were subjected to stochastic analysis.
REFERENCES (9)
1.
Derlatka, M., & Parfieniuk, M. (2023). Real-world measurements of ground reaction forces of normal gait of young adults wearing various footwear. Scientific Data, 10, Article 60. https://doi.org/10.1038/s41597....
 
2.
Fryzowicz, A., Murawa, M., Kabaciński, J., Rzepnicka, A., & Dworak, L.B. (2018). Reference values of spatiotemporal parameters, joint angles, ground reaction forces, and plantar pressure distribution during normal gait in young women. Acta of Bioengineering and Biomechanics, 20 (1), 49–57.
 
3.
Kamiński, M. (2013). The stochastic perturbation method for computational mechanics. Wiley.
 
4.
Kamiński, M., Przychodzki, M., Łasecka-Plura, M., Guminiak, M., & Lenartowicz, A. (2024). Random eigenvibrations of beams with viscoelastic layers. Journal of Theoretical and Applied Mechanics, 62 (4), 763–767. https://doi.org/10.15632/jtam-....
 
5.
Lin, C.-F., Liu, H., Gros, M.T., Weinhold, P., Garret, W.E., & Yu, B. (2012). Biomechanical risk factors of non-contact ACL injuries: A stochastic biomechanical modeling study. Journal of Sport and Health Science, 1 (1), 36–42. https://doi.org/10.1016/j.jshs....
 
6.
Michałowska, M., Walczak, T., Grabski, J.K., & Cieślak, M. (2018). People identification based on dynamic determinants of human gait. Vibrations in Physical Systems, 29, Article 2018012.
 
7.
Park, J.S., & Kim, C.H. (2022). Ground-reaction-force-based gait analysis and its application to gait disorder assessment: New indices for quantifying walking behavior. Sensors, 22 (19), Article 7558. https://doi.org/10.3390/s22197....
 
8.
Richards, J., Levine, D., & Whittle, M.W. (2023). Whittle’s gait analysis (6th ed.). Elsevier.
 
9.
Żuk, M., & Trzeciak, M. (2017). Anatomical protocol for gait analysis: Joint kinematics measurement and its repeatability. Journal of Theoretical and Applied Mechanics, 55 (1), 369–376. https://doi.org/10.15632/jtam-....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top