ARTICLE
Orthotropic model of rolling bearing in modeling lathe spindle dynamics
 
More details
Hide details
1
West Pomeranian University of Technology, Department of Mechanical Engineering and Mechatronics, Szczecin, Poland
 
2
Research and Development Department, Andrychowska Fabryka Maszyn DEFUM S.A., Andrychów, Poland
 
 
Submission date: 2021-07-05
 
 
Final revision date: 2021-08-25
 
 
Acceptance date: 2021-10-24
 
 
Online publication date: 2021-11-02
 
 
Publication date: 2022-01-20
 
 
Corresponding author
Paweł Dunaj   

Faculty of Mechanical Engineering and Mechatronics, West Pomeranian University of Technology in Szczecin, Poland
 
 
Journal of Theoretical and Applied Mechanics 2022;60(1):17-31
 
KEYWORDS
TOPICS
ABSTRACT
This paper presents a method for simplified modeling of bearing nodes of a lathe spindle using the finite element method. The proposed modeling methodology is based on the use of an orthotropic material model, which is used to reflect the stiffness properties of the bearing, both in the radial and axial directions. The modeling results have been experimentally verified. This resulted in full agreement of the mode shapes, an average relative error of the natural frequency values of 1.48% and high agreement of the receptance function.
 
REFERENCES (25)
1.
Allemang R.J., 2003, The modal assurance criterion – twenty years of use and abuse, Sound and Vibration, 37, 8, 14-23.
 
2.
Cao H., Li B., Li Y., Kang T., Chen X., 2019, Model-based error motion prediction and fit clearance optimization for machine tool spindles, Mechanical Systems and Signal Processing, 133, 106252.
 
3.
Cao H., Li Y., Chen X., 2016, A new dynamic model of ball-bearing rotor systems based on rigid body element, Journal of Manufacturing Science and Engineering, 138, 7.
 
4.
Cao H., Niu L., Xi S., Chen X., 2018, Mechanical model development of rolling bearing-rotor systems: a review, Mechanical Systems and Signal Processing, 102, 37-58.
 
5.
Cao Y., Altintas Y., 2007, Modeling of spindle-bearing and machine tool systems for virtual simulation of milling operations, International Journal of Machine Tools and Manufacture, 47, 9, 1342-1350.
 
6.
Cao Y., Altintas Y., 2004, A general method for the modeling of spindle-bearing systems, Journal of Mechanical Design, 126, 6, 1089-1104.
 
7.
Guay P., Frikha A., 2015, Ball bearing stiffness. A new approach offering analytical expressions, Proceedings of 16th European Space Mechanisms and Tribology Symposium, Bilbao, 23-25.
 
8.
Gupta P.K., 1979, Dynamics of rolling-element bearings – Part IV: Ball bearing results, Journal of Lubrication Tribology, 101, 3, 319-326.
 
9.
Guyan R.J., 1965, Reduction of stiffness and mass matrices, AIAA Journal, 3, 2, 380.
 
10.
Hu G., Zhang D., Gao W., Chen Y., Liu T., Tian Y., 2018, Study on variable pressure/position preload spindle-bearing system by using piezoelectric actuators under close-loop control, International Journal of Machine Tools and Manufacture, 125, 68-88.
 
11.
Hung J.-P., Lai Y.-L., Luo T.-L., Su H.-C., 2013, Analysis of the machining stability of a milling machine considering the effect of machine frame structure and spindle bearings: experimental and finite element approaches, International Journal of Advanced Manufacturing Technology, 68, 9-12, 2393-2405.
 
12.
Jasiewicz M., Miądlicki K., 2019, Implementation of an algorithm to prevent chatter vibration in a CNC system, Materials, 12, 19, 3193.
 
13.
Jones A.B., 1960, A general theory for elastically constrained ball and radial roller bearings under arbitrary load and speed conditions, ASME Journal of Basic Engineering, 82, 2, 309-320.
 
14.
Lempriere B.M., 1968, Poisson’s ratio in orthotropic materials, AIAA Journal, 6, 11, 2226-2227.
 
15.
Mul J.M. de, Vree J.M., Maas D.A., 1989, Equilibrium and associated load distribution in ball and roller bearings loaded in five degrees of freedom while neglecting friction – Part I: General theory and application to ball bearings, Journal of Tribology, 111, 1, 142-148.
 
16.
Nelson H.D., 1980, A finite rotating shaft element using Timoshenko beam theory, ASME Journal of Mechanical Design, 102, 793-803.
 
17.
Neumark S., 1962, Concept of Complex Stiffness Applied to Problems of Oscillations with Viscous and Hysteretic Damping, HM Stationery Office.
 
18.
Peeters B., van der Auweraer H., Guillaume P., Leuridan J., 2004, The PolyMAX frequency-domain method: a new standard for modal parameter estimation, Shock and Vibration, 11, 3-4, 395-409.
 
19.
Rantatalo M., Aidanpää J.O., Göransson B., Norman P., 2007, Milling machine spindle analysis using FEM and non-contact spindle excitation and response measurement, International Journal of Machine Tools and Manufacture, 47, 7-8, 1034-1045.
 
20.
Ritou M., Rabréau C., Le Loch S., Furet B., Dumur D., 2018, Influence of spindle condition on the dynamic behavior, CIRP Annals, 67, 1, 419-422.
 
21.
Saint-Venant J.C. de, 1863, Sur la distribution des élasticités autour de chaque point d’un solide ou d’un milieu de contexture quelconque, particuliérement lorsqu’il est amorphe sans etre isotrope, Journal de Mathématiques Pures et Appliquées, 8, 257-430.
 
22.
Urbikain G., Olvera D., López de Lacalle L. N., Elías-Zúñiga A., 2016, Spindle speed variation technique in turning operations: modeling and real implementation, Journal of Sound and Vibration, 383, 384-396.
 
23.
Xi S., Cao H., Chen X., 2019, Dynamic modeling of spindle bearing system and vibration response investigation, Mechanical Systems and Signal Processing, 114, 486-511.
 
24.
Xi S., Cao H., Chen X, Niu L., 2018, Dynamic modeling of machine tool spindle bearing system and model based diagnosis of bearing fault caused by collision, Procedia CIRP, 77, 614-617.
 
25.
Xu K., Wang B., Zhao Z., Zhao F., Kong X., Wen B., 2020, The influence of rolling bearing parameters on the nonlinear dynamic response and cutting stability of high-speed spindle systems, Mechanical Systems and Signal Processing, 136, 106448.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top