ARTICLE
Numerical modelling of the ratchetting effect under uniaxial and multiaxial loading conditions
 
More details
Hide details
1
National School of Applied Sciences (ENSAH), Al-Hoceima, and Faculty of Science, Mohamed Premier University, Oujda
2
Team of Mechanics and Scientific Computing (ENSA), Mohamed Premier University, Oujda
3
AFORPA, CFA, Issy-les-Moulineaux, France
Online publish date: 2019-10-15
Publish date: 2019-10-15
Submission date: 2018-08-27
Acceptance date: 2019-05-16
 
Journal of Theoretical and Applied Mechanics 2019;57(4):897–907
KEYWORDS
ABSTRACT
The main objective of the present work is to numerically test the performance of a mi- cromechanical model under stress-controlled cyclic loading conditions. This simplified non- incremental model has a peculiarity of taking into account the grain shape effect and in- troduces an isotropic hardening variable for each slip system. The model shows an ability to predict accommodation, uni- and multiaxial ratchetting phenomena for complex loading paths. The uniaxial ratchetting is more pronounced for relatively higher mean stresses. Mo- reover, the evolution of intragranular isotropic hardening, mainly in path 1, is found to be dependent on both the sliding nature and the increase of the ACSS number in the case of multiaxial ratchetting. Finally, the main advantage of the explored multiscale approach is in its capability to describe local heterogeneities.
 
REFERENCES (29)
1.
Abdul-Latif A., 2004a, A comparison of two self-consistent models to predict the cyclic behavior of polycrystals, ASME Journal of Engineering Materials and Technology, 126, 62.
 
2.
Abdul-Latif A., 2004b, Pertinence of the grains aggregate type on the self-consistent model responses, International Journal of Solids and Structures, 41, 305-322.
 
3.
Abdul-Latif A., Radi M., 2010, Modeling of the grain shape effect on the elastic-inelastic behavior of polycrystals with self-consistent scheme, ASME Journal of Engineering Materials and Technology, 132, 1, 011008.
 
4.
Aubin V., Degallaix S., 2004, Ratchetting modeling of a duplex stainless steel: model based on yield surface distortion, Proceedings of 7th International Conference on Biaxial/Multiaxial Fatigue and Fracture, 273-278.
 
5.
Bari S., Hassan T., 2000, Anatomy of coupled constitutive models for ratcheting simulation, International Journal of Plasticity, 16, 381-409..
 
6.
Bari S., Hassan T., 2001, Kinematic hardening rules in uncoupled modeling for multiaxial ratcheting simulation, International Journal of Plasticity, 17, 885-905.
 
7.
Bari S., Hassan T., 2002, An advancement in cyclic plasticity modeling for multiaxial ratcheting simulation, International Journal of Plasticity, 18, 873-894.
 
8.
Bocher L., Delobelle P., Robinet P., Feaugas X., 2001, Mechanical and microstructural investigations of an austenitic stainless steel under non-proportional loadings in tension-torsion-internal and external pressure, International Journal of Plasticity, 17, 1491-1530.
 
9.
Burlet H., Cailletaud G., 1987, Modeling of cyclic plasticity in finite element codes, Proceedings of the 2nd International Conference on Constitutive Laws for Engineering Materials. Theory and Application, C.S. Desai et al. (Edit.), Elsevier, New York, 1157-1164.
 
10.
Chaboche J.L., 1977, Viscoplastic constitutive equations for description of cyclic and anisotropic behavior of metals, Bulletin de l’Acad´emie Polonaise des Sciences, Serie des Sciences Technique, 25, 33.
 
11.
Chaboche J.L., Nouailhas D., 1989, Constitutive modeling of ratchetting effects, ASME Journal of Engineering Materials and Technology, 111, 384-392, 409-416.
 
12.
Chaboche J.L., Nouailhas D., Pacou D., Paulmier P., 1991, Modeling of the cyclic response and ratchetting effects on Inconel-718 alloy, European Journal of Mechanics – A/Solids, 10, 101-121.
 
13.
Chaboche J.L., Rousselier G., 1983, On the plastic and viscoplastic constitutive equations, ASME Journal of Pressure Vessel Technology, 105, 153-164.
 
14.
Chache M., 2004, Etude de l’écrouissage cyclique des matériaux métalliques et des phénomènes de rochet, Thèse de doctorat, Université J. Fourier, Grenoble-I, France.
 
15.
Corona E., Hassan T., Kyriakides S., 1996, On the performance of kinematic hardening rules in predicting a class of biaxial ratchetting histories, International Journal of Plasticity, 12, 117-145.
 
16.
Delobelle P., Robinet P., Bocher L., 1995, Experimental study and phenomenological modelization of ratchet under uniaxial and biaxial loading on an austenitic stainless steel, International Journal of Plasticity, 11, 295-330.
 
17.
Goodman A.M., 1983, Development of constitutive equations for computer analysis of stainless steel components, 4th International Seminar on Inelastic Analysis and Life Prediction in High Temperature Environment, Chicago.
 
18.
Hassan T., Corna E., Kyriakides S., 1992, Ratchetting in cyclic plasticity – Part II: multiaxial behavior, International Journal of Plasticity, 8, 117-146.
 
19.
Hassan T., Kyriakides S., 1992, Ratcheting in cyclic plasticity – Part I: uniaxial behavior, International Journal of Plasticity, 8, 91-116.
 
20.
Hassan T., Taleb L., Krishna S., 2008, Influence of non-proportionnal loading on ratcheting responses and simulations by two recent cyclic plasticity models, International Journal of Plasticity, 24, 1863-1889.
 
21.
Kang G., Kan Q., Zhang J., Sun Y., 2006, Time-dependant ratchetting experiments of SS304 stainless steel, International Journal of Plasticity, 22, 858-894.
 
22.
Kerkour-El Miad A., 2011, Mod´elisation micromécanique du comportement cyclique des polycristaux sous chargements multiaxiaux à déformation et `a contrainte imposées avec l’effet de la forme du grain, Thèse de doctorat, Université Pierre et Marie Curie, Paris, France.
 
23.
Krempl E., Yao D., 1987, The viscoplasticity theory based on overstress applied to ratchetting and cyclic hardening, [In:] Low-Cycle Fatigue and Elastoplastic Behavior of Materials, K.T. Rie (Edit.), Elsevier, London, 35-48.
 
24.
Ohno N., Wang J.D., 1993, Kinematic hardening rules with critical state of dynamic recovery: Part I: Formulation and basic features for ratcheting behaviour, International Journal of Plasticity, 15, 375-390.
 
25.
Portier L., Calloch S., Marquis D., Geyer P., 2000, Ratchetting under tension-torsion loadings: experiments and modelling, International Journal of Plasticity, 16, 3-4, 303-335.
 
26.
Ruggles M.B., Krempl E., 1989, The influence of test temperature on the ratchetting behavior of type 304 stainles steel, ASME Journal of Engineering Materials and Technology, 111, 378-383.
 
27.
Tanaka E., 1994, A non proportionality parameter and a viscoplastic constitutive model taking into account amplitude dependences and memory effects of isotropic hardening, European Journal of Mechanics – A/Solids, 13, 155.
 
28.
Vincent L., Calloch S., Kurtyka T., Marquis D., 2002, An improvement of multiaxial ratchetting via yield surface distorsion, Journal of Engineering Materials and Technology, 124, 4, 402-411, DOI: 10.1115/1.1494450.
 
29.
Yoshida F., Kondo J., Kikuchi Y., 1988, Visco-plastic behavior of stainless steel SU304 under cyclic loading at room temperature, Transactions of the JSME, A54, 1151-1157.
 
eISSN:2543-6309
ISSN:1429-2955