ARTICLE
Multiobjective global optimization of mechanical systems with cracks
Witold Beluch 1  
,  
 
 
More details
Hide details
1
Silesian University of Technology, Faculty of Mechanical Engineering, Gliwice, Poland
CORRESPONDING AUTHOR
Witold Beluch   

Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
Online publication date: 2020-04-15
Publication date: 2020-04-15
Submission date: 2019-11-27
Final revision date: 2020-02-21
Acceptance date: 2020-03-02
 
Journal of Theoretical and Applied Mechanics 2020;58(2):553–564
KEYWORDS
TOPICS
ABSTRACT
The paper is devoted to the multiobjective shape optimization of cracked structures. The two main goals are: reduction of the negative crack influence of identified cracks and optimal design of structural elements to reduce the risk of crack occurrence and growth. NURBS (Non-Uniform Rational B-Splines) curves are used to model the structure boundaries. Global optimization methods in the form of evolutionary algorithms are employed. As different optimization criteria are considered simultaneously, the efficient multiobjective optimization method are applied. An in-house multiobjective evolutionary algorithm is proposed as an efficient optimization tool. The dual boundary element method is used to solve the boundaryvalue problem.
 
REFERENCES (30)
1.
Aliabadi M.H., 2003, Boundary element methods in linear elastic fracture mechanics, Comprehensive Structural Integrity, DOI: 10.1016/B978-0-12-803581-8.00878-X.
 
2.
Anderson T.L., 2005, Fracture Mechanics: Fundamentals and Application, CRC Press, Boca Raton, London, New York, Singapore, DOI: 10.1201/9781420058215.
 
3.
Baptista R., Claudio R. A., Reis L., Madeira J. F. A., Guelho I., Freitas M., 2015, Optimization of cruciform specimens for biaxial fatigue loading with direct multi search, Theoretical and Applied Fracture Mechanics, DOI: 10.1016/j.tafmec.2015.06.009.
 
4.
Beluch W., 2005, Evolutionary shape optimization in fracture problems, Computer Assisted Mechanics and Engineering Sciences, 12, 2-3, 111-121.
 
5.
Beluch W., Długosz A., 2016, Multiobjective and multiscale optimization of composite materials by means of evolutionary computations, Journal of Theoretical and Applied Mechanics, DOI: 10.15632/jtam-pl.54.2.397.
 
6.
Blandford G.E., Ingraffea A.R., Ligget J.A., 1981, Two-dimensional stress intensity factor computations using the boundary element method, International Journal for Numerical Methods in Engineering, DOI: 10.1002/nme.1620170308.
 
7.
Brebbia C.A., Dominiguez J., 1989, Boundary Elements an Introductory Course, Computational Mechanics Publications, Southampton, Boston.
 
8.
Brebbia C.A., Walker S., 2016, Boundary Element Techniques in Engineering, Newnes-Butterworths, London-Boston, Sydney, Wellington, Durban, Toronto, DOI: 10.1016/C2013-0-00814-6.
 
9.
Burczyński T., Beluch W., 2001, The identification of cracks using boundary elements and evolutionary algorithms, Engineering Analysis with Boundary Elements, DOI: 10.1016/S0955-7997(01)00027-3.
 
10.
Burczyński T., Długosz A., 2012, Multiobjective shape optimization of selected coupled problems by means of evolutionary algorithms, Bulletin of the Polish Academy of Sciences-Technical Sciences, DOI: 10.2478/v10175-012-0028-3.
 
11.
Caicedo J., Portela A., 2015, Cracked plate analysis with the dual boundary element method and Williams’ eigenexpansion, Engineering Analysis with Boundary Elements, DOI: 10.1016/j.enganabound.2014.11.010.
 
12.
Deb K., 1999, Multi-objective genetic algorithms: problem difficulties and construction of test problems, Evolutionary Computation, DOI: 10.1162/evco.1999.7.3.205.
 
13.
Deb K., 2001, Multi-Objective Optimization Using Evolutionary Algorithms, John Wiley & Sons, New York.
 
14.
Deb K., Pratap A., Agarwal S., Meyarivan T., 2002, A fast and elitist multi-objective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, DOI: 10.1109/4235.996017.
 
15.
Długosz A., 2013, Multicriteria Optimization in Coupled Field Problems (in Polish), Monograph (497), Silesian University of Technology Publishing House.
 
16.
Długosz A., 2014, Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 14, 1, 86-93.
 
17.
Ehrgott M., 2005, Multicriteria Optimization, Springer-Verlag, Berlin, Heidelberg, DOI: 10.1007/3-540-27659-9.
 
18.
Gross D., Seelig T., 2011, Fracture Mechanics: with an Introduction to Micromechanics, Springer-Verlag, Berlin Heidelberg, DOI: 10.1007/978-3-642-19240-1.
 
19.
Neimitz A., 1998, Fracture Mechanics (in Polish), Polish Scientific Publishers PWN, Warszawa.
 
20.
Perera R., Ruiz A., Manzano C., 2009, Performance assessment of multicriteria damage identification genetic algorithms, Computers and Structures, DOI: 10.1016/j.compstruc.2008.07.003.
 
21.
Perera R., Sevillano E., Arteaga A., De Diego A., 2014, Identification of intermediate debonding damage in FRP-plated RC beams based on multi-objective particle swarm optimization without updated baseline model, Composites, Part B: Engineering, DOI: 10.1016/j.compositesb.2014.02.008.
 
22.
Piegl L., Tiller W., 1995, The NURBS Book, Springer-Verlag, Berlin, Heidelberg, DOI: 10.1007/978-3-642-97385-7.
 
23.
Portela A., Aliabadi M.H., Rooke D.P., 1992, Dual boundary element method: efficient implementation for cracked problems, International Journal for Numerical Methods in Engineering, DOI: 10.1002/nme.1620330611.
 
24.
Shim M.B., Suh M.W., 2010, A study on multiobjective optimization technique for inverse and crack identification problems, Inverse Problems in Engineering, DOI: 10.1080/1068276021000008504.
 
25.
Snyder M.D., Cruse T.A., 1975, Boundary integral equation analysis of cracked anisotropic plates, International Journal of Fracture, DOI: 10.1007/BF00038898.
 
26.
Sun C.T., Jin Z.-H., 2012, Fracture Mechanics, Academic Press, DOI: 10.1016/C2009-0-63512-1.
 
27.
Tada H., Paris P., Irwin G., 2000, The Stress Analysis of Cracks Handbook, 3rd ed., ASME Press, New York, DOI: 10.1115/1.801535.
 
28.
Talbi E-G., 2009, Metaheuristics: From Design to Implementation, John Wiley & Sons, Hoboken, New Jersey, DOI: 10.1002/9780470496916.
 
29.
Upadhyaya Y.S., Sridhara B.K., 2011, Fatigue life prediction: a continuum damage mechanics and fracture mechanics approach, Materials and Design, DOI: 10.1016/j.matdes.2011.09.049.
 
30.
Zitzler E., Laumanns M., Bleuler S., 2004, A tutorial on evolutionary multiobjective optimization, [In:] Metaheuristics for Multiobjective Optimisation. Lecture Notes in Economics and Mathematical Systems, 535, X. Gandibleux, M. Sevaux, K. Sörensen, V. T’kindt (Eds.), Springer, Berlin, Heidelberg, DOI: 10.1007/978-3-642-17144-4 1.
 
eISSN:2543-6309
ISSN:1429-2955