In this work, the morphology of a liquid bridge in a slit pore geometry was investigated as a
function of both the bridge height and aspect ratio (height/width). The end contour interface
of the liquid bridge was modeled by using a saddle shape, and the liquid-air interface was
described via an arc of a circle. By employing the free energy approach, a simple formula was
obtained to predict variation of the pinning angle as a function of the distance between the
slits. The pinning angle depended on the liquid volume and on both the wetting properties
and the geometry of the system (height and width). The critical aspect ratio at which the
liquid bridge meniscus transitioned from concave to convex was determined. The calculations
were in good agreement with the experimental data. The morphology of the liquid bridges
in a slit pore geometry can be used in various fields such as the packaging of electronic and
micro-electromechanical systems.
REFERENCES(15)
1.
Broesch D.J., Dutka F., Frechette J., 2013, Curvature of capillary bridges as a competition between wetting and confinement, Langmuir, 29, 15558-15564.
Evans R., Marconi U.M.B., Tarazona P., 1986, Capillary condensation and adsorption in cylindrical and slit-like pores, Journal of the Chemical Society, Faraday Transactions 2: Molecular and Chemical Physics, 82, 1763-1787.
Galaktionov E.V., Galaktionova N.E., Tropp E.A., 2017, Shape of the surface of a vertical liquid bridge between two parallel solid planes taking into account the gravity force for small Bond numbers, Technical Physics, 62, 1482-1489.
Peng Y.F., Li G.X., 2007, An elastic adhesion model for contacting cylinder and perfectly wetted plane in the presence of meniscus, Journal of Tribology, 129, 231-234.
Princen H.M., 1970, Capillary phenomena in assemblies of parallel cylinders: III. Liquid columns between horizontal parallel cylinders, Journal of Colloid and Interface Science, 34, 171-184.
Raccurt O., Tardif F., d’Avitaya F.A., Vareine T., 2004, Influence of liquid surface tension on stiction of SOI MEMS, Journal of Micromechanics and Microengineering, 14, 1083-1085.
Xu J., Xia J., Hong S.W., Lin Z., Qiu F., Yang Y., 2006, Self-assembly of gradient concentric rings via solvent evaporation from a capillary bridge, Physical Review Letters, 96, 066104.
Zhu Z.F., Jia J.Y., Fu H.Z., Chen Y. L., Zeng Z., Yu D. L., 2015, Shape and force analysis of capillary bridge between two slender structured surfaces, Mechanical Sciences, 6, 211-220.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.