ARTICLE
Three-dimensional modelling and parameter identification of the seated human body exposed to random vibration
 
More details
Hide details
 
Submission date: 2023-08-28
 
 
Final revision date: 2023-09-20
 
 
Acceptance date: 2023-09-22
 
 
Online publication date: 2023-10-12
 
 
Publication date: 2023-10-30
 
 
Corresponding author
Igor Maciejewski   

Department of Mechatronics and Applied Mechanics, Koszalin University of Technology, Poland
 
 
Journal of Theoretical and Applied Mechanics 2023;61(4):833-845
 
TOPICS
REFERENCES (27)
1.
Adam S.A., Jalil N.A.A. , 2017, Vertical suspension seat transmissibility and SEAT values for seated person exposed to whole-body vibration in agricultural tractor – preliminary study, Procedia Engineering, 170, 435-442.
 
2.
Chandler R.F., Clauser C.E, McConville J.T., Reynolds H.M., 1975 Investigation of Inertial Properties of the Human Body, U.S. Department of Transportation within the Project: Seat Design, Driver Comfort, and the Automotive Package, Washington.
 
3.
Desai R., Guha A., Seshu P., 2018, Multibody biomechanical modelling of human body response to direct and cross axis vibration, Procedia Computer Science, 133, 494-501.
 
4.
Fritz M., 1981, Analyse der vertikalen Auflagenkraft bei unterschiedlichen Sprüngen anhand von gemessenen und simulierten Kraftkurven, Leistungssport, 11, 1, 74-78.
 
5.
Głowiński S., Błażejewski A., Królikowski T., Knitter R., 2019, Gait recognition: a challenging task for MEMS signal identification, Sustainable Design and Manufacturing, 155, 473-483.
 
6.
Glowinski S., Blazejewski A., Krzyzynski T., 2017a, Human gait feature detection using inertial sensors wavelets, Wearable Robotics: Challenges and Trends – Part of the Biosystems and Biorobotics, 16, 397-401.
 
7.
Glowinski S., Blazejewski A., Krzyzynski T., 2017b, Inertial sensors and wavelets analysis as a tool for pathological gait identification, Innovations in Biomedical Engineering – Part of the Advances in Intelligent Systems and Computing, 526, 106-114.
 
8.
Głowiński S., Blażejewski A., Krzyżyński T., 2018, Body part accelerations evaluation for chosen techniques in martial arts, Advances in Intelligent Systems and Computing, 623, 235-243.
 
9.
Głowiński S., Krzyżyński T., Pecolt S., Maciejewski I., 2015, Design of motion trajectory of an arm exoskeleton, Archive of Applied Mechanics, 85, 75-87.
 
10.
International Organization for Standardization ISO 2631, 1997, Mechanical Vibration and Shock – Evolution of Human Exposure to Whole Body Vibration, Geneva.
 
11.
International Organization for Standardization ISO 7096, 2000, Earth-Moving Machinery – Laboratory Evaluation of Operator Seat Vibration, Geneva.
 
12.
Kim T.H., Kim Y.T., Yoon Y.S., 2005, Development of a biomechanical model of the human body in a sitting posture with vibration transmissibility in the vertical direction, International Journal of Industrial Ergonomics, 35, 9, 817-829.
 
13.
Liu C., Qiu Y., 2020, Localised apparent masses over the interface between a seated human body and a soft seat during vertical whole-body vibration, Journal of Biomechanics, 109, ID 109887, 1-12.
 
14.
Liu C., Qiu Y., 2021, Mechanism associated with the effect of backrest inclination on biodynamic responses of the human body sitting on a rigid seat exposed to vertical vibration, Journal of Sound and Vibration, 510, ID 116299, 1-22.
 
15.
Maciejewski I., Blazejewski A., Pecolt S., Krzyzynski T., 2022, A sliding mode control strategy for active horizontal seat suspension under realistic input vibration, Journal of Vibration and Control, 29, 11-12, 2539-2551.
 
16.
Maciejewski I., Krzyzynski T., 2020, Global sensitivity analysis in optimisation of the vibration reduction systems, AIP Conference Proceedings, 2239, 020028.
 
17.
Maciejewski I., Krzyzynski T., Meyer L., Meyer H., 2017, Shaping the vibro-isolation properties of horizontal seat suspension, Journal of Low Frequency Noise, Vibration and Active Control, 36, 3, 203-213.
 
18.
Maciejewski I., Krzyzynski T., Pecolt S., Chamera S., 2019, Semi-active vibration control of horizontal seat suspension by using magneto-rheological damper, Journal of Theoretical and Applied Mechanics, 57, 2, 411-420.
 
19.
Mandapuram S., Rakheja S., Marcotte P., Boileau P.E., 2011, Analyses of biodynamic responses of seated occupants to uncorrelated fore-aft and vertical whole-body vibration, Journal of Sound and Vibration, 330, 16, 4064-4079.
 
20.
Mihcin S., Kose H., Cizmeciogullari S., Ciklacandir S., Kocak M., Tosun A., Akan A., 2019, Investigation of wearable motion capture system towards biomechanical modelling, IEEE International Symposium on Medical Measurements and Applications, 1-5.
 
21.
Shippen J., May B., 2016, BoB – biomechanics in MATLAB, Proceedings of the 11th International Conference BIOMDLORE.
 
22.
Stein G.J., Múčka P., Gunston T.P., Badura S., 2008, Modelling and simulation of locomotive driver’s seat vertical suspension vibration isolation system, International Journal of Industrial Ergonomics, 38, 5-6, 384-395.
 
23.
Stoica P., Moses R., 2005, Spectral Analysis of Signals, Prentice Hall, New Yersey.
 
24.
Sun X., Jing X., 2016, A nonlinear vibration isolator achieving high-static-low dynamic stiffness and tunable anti-resonance frequency band, Mechanical Systems and Signal Processing, 80, 166-188.
 
25.
Sun S., Yang J., Deng H., Du H., Li W.H., Alici G., Nakano M., 2015, Horizontal vibration reduction of a seat suspension using negative changing stiffness magnetorheological elastomer isolators, International Journal of Vehicle Design, 68, 104-118.
 
26.
Zhao Y., Alashmori M., Bi F., Wang X., 2021, Parameter identification and robust vibration control of a truck driver’s seat system using multi-objective optimization and genetic algorithm, Applied Acoustics, 173, ID 107697, 1-13.
 
27.
Zheng G., Qiu, Y., Griffin M.J., 2011, An analytic model of the in-line and cross-axis apparent mass of the seated human body exposed to vertical vibration with and without a backrest, Journal of Sound and Vibration, 330, 26, 6509-6525.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top