The engine intake pipe is an important part of the engine. A reasonable layout of the intake
pipe can prolong service life of the engine and improve engine power. The optimization of
design of the intake pipe has a great impact on the overall performance of the engine. The
design of the intake pipe based on experience is subjective and unilateral, and the design
cycle and experimental period are long. Ansys Fluent software is used to simulate the design,
which can more intuitively reflect the air flow condition of the intake pipe and enable selection
of the best layout. First of all, a three-dimensional model of the intake pipe is simulated and
the airflow characteristics are studied and analyzed. The streamline diagram and velocity
contour under various conditions are obtained. Then, compared with the simulation results,
the position of the intake pipe is optimized. Finally, the optimized intake pipe is simulated
and verified. According to the experimental results, the intake performance of the optimized
intake pipe is greatly improved.
REFERENCES(22)
1.
Adithya K., Ahmed F., Padmanathan P., Mohan C.G., Prakash R., 2020, Design optimization of intake manifold of dual fuel engine, Materials Today: Proceedings, 45, 646-651.
Agureev I.E., Elagin M.Yu., Pavlov D.V., Khmelev R.N., 2020, Studies of the process of heating air in the inlet pipe for starting a diesel engine at low temperatures, IOP Conference Series: Materials Science and Engineering, 971, 4, 042028.
Dhital N.B., Yang H.H., Wang L.C., Hsu Y.T., Zhang H.Y., Young L.H., Lu J.H., 2019, VOCs emission characteristics in motorcycle exhaust with different emission control devices, Atmospheric Pollution Research, 10, 5, 1498-1506.
Gao W.J., Zhou W.W., Zhao H.B., Zhang Q., 2017, Analysis of flow characteristics in intake pipe of gas engine (in Chinese), Internal Combustion Engines and Accessories, 3, 45-47.
Gobi K., Kannapiran B., Devaraj D., Valarmathi K., 2019, Design, performance evaluation and analysis of the inlet tube of pressure sensor for chamber pressure measurement, Sensor Review, 39, 4, 612-621.
Karthickeyan V., 2019, Effect of combustion chamber bowl geometry modification on engine performance, combustion and emission characteristics of biodiesel fuelled diesel engine with its energy and exergy analysis, Energy, 176, 830-852.
Khoa N.X., Lim O., 2019, The effects of combustion duration on residual gas, effective release energy, engine power and engine emissions characteristics of the motorcycle engine, Applied Energy, 248, 54-63.
Lin S.M., Lv Q.H., 2019, Cause analysis and countermeasures of carbon deposition in intake pipe of EA888 engine, Automotive Practical Technology, 10, 125-126.
Mazzaro R.S., Hanriot S.M., Amorim R.J., Magalhães P.A.A. Jr , 2020, Numerical analysis of the air flow in internal combustion engine intake ducts using Herschel-Quincke tubes, Applied Acoustics, 165, 107310.
Shi D.X., Guo L.X., Li K.N., Yao C.D., Yang H.T., 2020, Effect of intake pipe structure on exhaust gas recirculation rate uniformity of natural gas engine (in Chinese), Internal Combustion Engine Engineering, 41, 3, 42-48.
Sun Z.Z., Wang B.T., Zheng X.Q., Kawakubo T., Tamaki H., Numakura R., 2020, Effect of bent inlet pipe on the flow instability behavior of centrifugal compressors, Chinese Journal of Aeronautics, 33, 8, 2099-2109.
Wahono B., Setiawan A., Lim O., 2019, Experimental study and numerical simulation on in-cylinder flow of small motorcycle engine, Applied Energy, 255, 113863.
Wang Y.Y., Ma Z.M., Hu S., Wang H.C., Gao Z.B., 2018, Study on the influence of intake manifold injection on the accelerated loading process of diesel engine, Automotive Engine, 5, 14-19.
Xu M., Wang D., Zhang Q.K., Zhang X.L., Wei S.T., Wang X.Z., 2021, Effect of structural optimization of light truck intake pipe on flow field characteristics of the system, Automotive Practical Technology, 46, 17, 128-130+141.
Yan K.N., Geng J., Wang X.J., Wang D.J., 2020, Optimal design of intake pipe of Honda energy saving racing engine (in Chinese), Internal Combustion Engines and Accessories, 23, 1-2.
Yi T., Bu Y.H., Chen M., Ju J., 2018, Model reconstruction and CFD analysis of gasoline engine intake pipe based on reverse design (in Chinese), Mechanical Design, 35, S1, 79-82.
Yin A.H., Li Z.Y., Wan P.Y., Zuo F.S., 2020, Research on short circuit fault of pure electric vehicle motor based on multi parameter, Forest Engineering, 36, 1, 103-108.
Zhang J., Ye L., Sun S.L., 2019, Shuli research on optimization design and processing technology of engine intake system based on Fluent (in Chinese), Hydraulic and Pneumatic, 9, 50-55.
Zheng Q.M., Zuo F.S., Zhu Y.X., Li Z.Y., Zhang Y., 2019, Research on vibration of permanent magnet synchronous motor based on modal analysis, Forest Engineering, 35, 5, 76-81.
Zhuang S.K., Lin M.S., Hu B.K., Zhuang W.J., 2020, Material technology and forming of engine variable diameter and different direction intake pipe, Employment and Security, 3, 23-24.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.