In this paper, the stochastic-aeroelastic nonlinear response of a three-degree-of-freedom
(3-DOF) structural nonlinear airfoil with a control flap is presented. The critical parameter
conditions of stochastic P-bifurcation are solved by using the improved average method, the
stochastic average method combined with the singularity theory. The results show that the
periodic solution produced by Hopf bifurcation has involved a second bifurcation, the nonlinear
critical speed of saddle node bifurcation points is advanced, and the airfoil appears
bi-stable. The stochastic singularity analysis shows that the increasing stochastic disturbance
intensity will cause a greater probability for a large amplitude stochastic flutter.
REFERENCES(20)
1.
Chassaing J.C., Lucor D., Trégon J., 2012, Stochastic nonlinear aeroelastic analysis of a supersonic lifting surface using an adaptive spectral method, Journal of Sound and Vibration, 331, 2, 394-411.
Conner M.D., Tang D., Dowell E., Virgin L., 1997, Nonlinear behavior of a typical airfoil section with control surface freeplay: a numerical and experimental study, Journal of Fluids and Structures, 11, 1, 89-109.
Dowell E.H., Thomas J.P., Hall K.C., 2004, Transonic limit cycle oscillation analysis using reduced order aerodynamic models, Journal of Fluids and Structures, 19, 1, 17-27.
Dribusch C., Missoum S., Beran P., 2010, A multifidelity approach for the construction of explicit decision boundaries: application to aeroelasticity, Structural and Multidisciplinary Optimization, 42, 5, 693-705.
Irani S., Sarrafzadeh H., Amoozgar M.R., 2011, Bifurcation in a 3-DoF airfoil with cubic structural nonlinearity, Chinese Journal of Aeronautics, 24, 3, 265-278.
Lee B.H.K., Price S.J., Wong Y.S., 1999, Nonlinear aeroelastic analysis of airfoils: bifurcation and chaos, Progress in Aerospace Sciences, 35, 3, 205-334.
Poirel D.C., Price S.J., 2003a, Random binary (coalescence) flutter of a two-dimensional linear airfoil, Journal of Fluids and Structures, 18, 1, 23-42.
Yang Y.R., 1995, KBM method of analyzing limit cycle flutter of a wing with an external store and comparison with a wind-tunnel test, Journal of Sound and Vibration, 187, 2, 271-280.
Zheng G., Yang Y., 2006, Analysis of bifurcation of an airfoil with an external store in incompressible flow, Science Technology and Engineering, 6, 8, 1018-1021.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.