ARTICLE
Research on chaotic features of a flow field over a plunging airfoil based on dynamic mode decomposition
,
 
,
 
,
 
 
 
 
More details
Hide details
1
School of Aeronautics, Northwestern Polytechnical University, Xi’an, China
 
2
Research and Development Institute of Northwestern Polytechnical University in Shenzhen, Shenzhen, China
 
3
Yangtze River Delta Research Institute of Northwestern Polytechnical University, Taicang, China
 
 
Submission date: 2020-10-30
 
 
Final revision date: 2021-01-20
 
 
Acceptance date: 2021-02-22
 
 
Online publication date: 2021-04-11
 
 
Publication date: 2021-04-15
 
 
Corresponding author
Yuhang Qi   

School of Aeronautics, Northwestern Polytechnical University, China
 
 
Journal of Theoretical and Applied Mechanics 2021;59(2):293-305
 
KEYWORDS
TOPICS
ABSTRACT
Periodic motion of a plunging airfoil causes continuous changes in the surrounding flow field. The time-dependent thrust coefficient depends entirely on unsteady characteristics of the flow field. On the contrary, the time-dependent thrust coefficient may also reflect the unsteady characteristics of the corresponding flow field. With the fast Fourier transform (FFT) and dynamic mode decomposition (DMD), unsteady aerodynamic forces can be correlated with the flow field characteristics in the frequency domain. In the present paper, DMD is performed to analyze the unsteady characteristics of the flow field around a plunging NACA0012 airfoil at the Reynolds number of 20 000.
 
REFERENCES (24)
1.
Ashraf M.A., Young J., Lai J.C.S., 2012, Oscillation frequency and amplitude effects on plunging airfoil propulsion and flow periodicity, AIAA Journal, 50, 11, 2308-2324.
 
2.
Belson B.A., Tu J.H., Rowley C.W., 2014, Algorithm 945: modred — A parallelized model reduction library, ACM Transactions on Mathematical Software, 40, 4, 30.
 
3.
Betz A., 1912, Ein beitrag zur erklaerung des segelfluges, Zeitschrift für Flugtechnik und Motorluftschiffahrt, 3, 269-272.
 
4.
Blondeaux P., Guglielmini L., Triantafyllou M.S., 2005, Chaotic flow generated by an oscillating foil, AIAA Journal, 43, 4, 918-921.
 
5.
Bose C., Sarkar S., 2018, Investigating chaotic wake dynamics past a flapping airfoil and the role of vortex interactions behind the chaotic transition, Physics of Fluids, 30, 4, 047101.
 
6.
Calderon D.E., Cleaver D.J., Gursul I., Wang Z., 2014, On the absence of asymmetric wakes for periodically plunging finite wings, Physics of Fluids, 26, 071907.
 
7.
Chen K.K., Tu J.H., Rowley C.W., 2012, Variants of dynamic mode decomposition: boundary condition, Koopman, and Fourier analyses, Journal of Nonlinear Science, 22, 887-915.
 
8.
Davari A.R., 2017,Wake structure and similar behavior of wake profiles downstream of a plunging airfoil, Chinese Journal of Aeronautics, 30, 1281-1293.
 
9.
Hemati M.S., Williams M.O., Rowley C.W., 2014, Dynamic mode decomposition for large and streaming datasets, Physics of Fluids, 26, 111701.
 
10.
Jones K.D., Dohring C.M., Platzer M.F., 1998, Experimental and computational investigation of the Knoller-Betz effect, AIAA Journal, 36, 1240-1246.
 
11.
Jovanović M.R., Schmid P.J., Nichols J.W., 2014, Sparsity-promoting dynamic mode decomposition, Physics of Fluids, 26, 024103.
 
12.
Katzmayr R., 1922, Effect of periodic changes of angle of attack on behavior of airfoils, NACA TM, 147.
 
13.
Khalid M.S.U., Akhtar I., Dong H., Ahsan N., Jiang X., Wu B., 2018, Bifurcations and route to chaos for flow over an oscillating airfoil, Journal of Fluids and Structures, 80, 262-274.
 
14.
Klus S., Gelss P., Peitz S., Schütte C., 2018, Tensor-based dynamic mode decomposition, Nonlinearity, 31, 3359-3380.
 
15.
Knoller R., 1909, Die Gesetze des Luftwiderstandes, Flug-und Motortechnik (Wien), 3, 21, 1-7.
 
16.
Lewin G.C., Haj-Hariri H., 2003, Modelling thrust generation of a two-dimensional heaving airfoil in a viscous flow, Journal of Fluid Mechanics, 492, 339-362.
 
17.
Noack B.R., Stankiewicz W., Morzyński M., Schmid P.J., 2016, Recursive dynamic mode decomposition of transient and post-transient wake flows, Journal of Fluid Mechanics, 809, 843-872.
 
18.
Schmid P.J., 2010, Dynamic mode decomposition of numerical and experimental data, Journal of Fluid Mechanics, 656, 5-28.
 
19.
Schmid P.J., Meyer K.E., Pust O., 2009, Dynamic mode decomposition and proper orthogonal decomposition of flow in a lid-driven cylindrical cavity, 8th International Symposium on Particle Image Velocimetry, Melbourne, Victoria, Australia.
 
20.
Schmid P.J., Sesterhenn J., 2008, Dynamic mode decomposition of numerical and experimental data, 61st Annual Meeting of the APS Division of Fluid Dynamics, American Physical Soc., College Park, MD.
 
21.
Srikumar G., Srikrishnan V.A., Purushothaman R.K., Thiagarajan V., Velamati R.K., Laxman V., 2018, Numerical study on thrust generation in an airfoil undergoing nonsinusoidal plunging motion, Journal of Aerospace Engineering, 31, 4, 04018037.
 
22.
Taira K., Brunton S.L., Dawson S.T.M., Rowley C.W., Colonius T., McKeon B.J., Schmidt O.T., Gordeyev S., Theofilis V., Ukeiley L.S., 2017, Modal analysis of fluid flows: An Overview, AIAA Journal, 55, 4013-4041.
 
23.
Visbal M. R., 2009, High-fidelity simulation of transitional flows past a plunging airfoil, AIAA Journal, 47, 11, 2685-2697.
 
24.
Yu M., Wang B., Wang Z.J., Farokhi S., 2018, Evolution of vortex structures over flapping foils in shear flows and its impact on aerodynamic performance, Journal of Fluids and Structures, 76, 116-134.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top