ARTICLE
Response analysis and control of composite thin plate with piezoelectric actuators by Finite Element Method
 
More details
Hide details
1
HCMC University of Technology and Education (HCMUTE), Ho Chi Minh City, Vietnam
 
2
Cao Thang Technical College (CTCT), Ho Chi Minh City, Vietnam
 
3
Nguyen Tat Thanh University (NTTU), Ho Chi Minh City, Vietnam
 
 
Submission date: 2024-04-08
 
 
Final revision date: 2024-09-05
 
 
Acceptance date: 2024-10-18
 
 
Online publication date: 2025-02-05
 
 
Corresponding author
Son Hoai Nguyen   

Faculty of Civil Engineering, HCMC University of Technology and Education (HCMUTE), Viet Nam
 
 
Journal of Theoretical and Applied Mechanics 2025;63(1):177-195
 
KEYWORDS
TOPICS
ABSTRACT
This paper presents the shape deformation of a thin plate coupled to piezoelectric actuators and sensors analyzed using the finite element method (FEM). The coupling effects between electric and mechanical properties of the piezoelectric material draw attention to potential applications, such as actuators, sensors, etc. The proposed method is analyzed and evaluated, and its effectiveness is proven. Firstly, a rectangular piezoelectric actuator with three symmetrically bonded sensors is used. Secondly, it is applied to control the swimming pool diving board. Combination of FEM and LQR active control algorithms through numerical simulation results shows changing shape and position of the piezoelectric patch which makes premises for an experiment and production.
REFERENCES (31)
1.
Abreu G.L.C.M. de, Ribeiro J.F., Steffen V. Jr., 2004, Finite element modeling of a plate with localized piezoelectric sensors and actuators, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 26, 2, 117-128.
 
2.
Adriaens H.J.M.T.S., De Koning W.L., Banning R., 2000, Modeling piezoelectric actuators, IEEE/ASME Transactions on Mechatronics, 5, 4, 331-341.
 
3.
Bailey T., Hubbard J.E., 1985, Distributed piezoelectric-polymer active vibration control of a cantilever beam, Journal of Guidance, Control, and Dynamics, 8, 5, 605-611.
 
4.
Benjeddou A., Trindade M.A., Ohayon R., 2000, Piezoelectric actuation mechanisms for intelligent sandwich structures, Smart Materials and Structures, 9, 3, 328-335.
 
5.
Bhalla S., Moharana S., Talakokula V., Kaur N., 2017, Piezoelectric Materials: Applications in SHM, Energy Harvesting and Biomechanic, Wiley.
 
6.
Cao X., Tanner G., Chronopoulos D., 2020, Active vibration control of thin constrained composite damping plates with double piezoelectric layers, Wave Motion, 92, 102423.
 
7.
Chen L., Xue J., Pan S., Chang L., 2020, Study on cantilever piezoelectric energy harvester with tunable function, Smart Materials and Structures, 29, 7, 075001.
 
8.
Chen W., Liu Y., Liu Y., Tian X., Shan X., Wang L., 2018, Design and experimental evaluation of a novel stepping linear piezoelectric actuator, Sensors and Actuators A: Physical, 276, 259-266.
 
9.
Chen X., Su C.-Y., Li Z., Yang F., 2016, Design of implementable adaptive control for micro/nano positioning system driven by piezoelectric actuator, IEEE Transactions on Industrial Electronics, 63, 10, 6471-6481.
 
10.
Crawley E.F., de Luis J., 1987, Use of piezoelectric actuators as elements of intelligent structures, AIAA Journal, 25, 10, 1373-1385.
 
11.
Dileep K.K., Subba Rao V.V., 2017, Vibration control of rectangular cross-ply FRP plates using PZT materials, Journal of Engineering Science and Technology, 12, 12, 3398-3411
 
12.
Dimitriadis E.K., Fuller C.R., Rogers C.A., 1991, Piezoelectric actuators for distributed vibration excitation of thin plates, Journal of Vibration and Acoustics, 113, 1, 100-107.
 
13.
Gohery S., Mozafari F., Moslemi N., Mouloodi S., Alebrahim R., et al., 2022, Static and dynamic deformation response of smart laminated composite plates induced by inclined piezoelectric actuators, Journal of Composite Materials, 56, 21, 3269-3293.
 
14.
Her S.-C., Chen H.-Y., 2022, Vibration excitation and suppression of a composite laminate plate using piezoelectric actuators, Materials, 15, 6, 2027.
 
15.
Hoa P.Q., Van T.T., Dat P.T., Hau D.T., Ha N.V., et al., 2018, Static and free vibration analyses of laminated composite shells by cell-based smoothed discrete shear gap method (CS-DSG3) using three-node triangular elements, Vietnam Journal of Mechanics, 40, 1, 89-103.
 
16.
Huang G.L., Sun C.T., 2006, The dynamic behaviour of a piezoelectric actuator bonded to an anisotropic elastic medium, International Journal of Solids and Structures, 43, 5, 1291-1307.
 
17.
Jafferis N.T., Lok M., Winey N., Wei G.-Y., Wood R.J., 2016, Multilayer laminated piezoelectric bending actuators: design and manufacturing for optimum power density and efficiency, Smart Materials and Structures, 25, 5, 055033.
 
18.
Karegar M., Bidgoli M.R., Mazaheri H., 2021, Smart control and seismic analysis of concrete frames with piezoelectric layer based on mathematical modelling and numerical method, Structures, 32, 1171-1179.
 
19.
Latrache M., Menasri N., 2022, Active control vibration of a smart composite plate for various boundary conditions, Turkish Journal of Computer and Mathematics Education (TURCOMAT), 13, 2, 671-688.
 
20.
Lopes V. Jr., Pereira J.A., Inman D.J., 2000, Structural FRF acquisition via electric impedance measurement applied to damage location, [In:] IMAC XVIII. Proceedings of IMAC-XVIII: A Conference on Structural Dynamics, San Antonio, USA, 41, 1549-1555
 
21.
Lumentut M.F., Howard I.M., 2014, Electromechanical finite element modelling for dynamic analysis of a cantilevered piezoelectric energy harvester with tip mass offset under base excitations, Smart Materials and Structures, 23, 9, 095037.
 
22.
Luo Q., Tong L., 2006, High-precision shape control of plates using orthotropic piezoelectric actuators, Finite Elements in Analysis and Design, 42, 11, 1009-1020.
 
23.
Moretti M., Silva E.C.N., 2019, Topology optimization of piezoelectric bi-material actuators with velocity feedback control, Frontiers of Mechanical Engineering, 14, 2, 190-200.
 
24.
Phung-Van P., Nguyen-Thoi T., Le-Dinh T., Nguyen-Xuan H., 2013, Static and free vibration analyses and dynamic control of composite plates integrated with piezoelectric sensors and actuators by the cell-based smoothed discrete shear gap method (CS-FEM-DSG3), Smart Materials and Structures, 22, 9, 095026.
 
25.
Reddy J.N., 1999, On laminated composite plates with integrated sensors and actuators, Engineering Structures, 21, 7, 568-593.
 
26.
Saravanos D.A., Heyliger P.R., 1999, Mechanics and computational models for laminated piezoelectric beams, plates, and shells, Applied Mechanics Reviews, 52, 10, 305-320.
 
27.
Trojanowski R., Wiciak J., 2020, Impact of the size of the sensor part on sensor-actuator efficiency, Journal of Theoretical and Applied Mechanics, 58, 2, 391-401.
 
28.
Uchino K., 1986, Electrostrictive actuators: materials and application, American Ceramic Society Bulletin, 65, 4, 647-652.
 
29.
Uchino K. (Edit.), 2010, Advanced Piezoelectric Materials: Science and Technology, Woodhead Publishing Limited
 
30.
Wang X., Shen Y., 1998, On the characterization of piezoelectric actuators attached to structures, Smart Materials and Structures, 7, 3, 389-395.
 
31.
Wei H., Wang H., Xia Y., Cui D., Shi Y., et al., 2018, An overview of lead-free piezoelectric materials and devices, Journal of Materials Chemistry C, 6, 46, 12446-12467.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top