This paper investigates the static behavior of bolted joints and the extent of its control in
the design of assembled structures. An analysis method is thus first developed highlighting
stresses distribution in the junction to dimension the functional performance area. A
description of the joint characteristics is presented. Numerical simulations, comparing the
complete and simplified finite element models relevance, are then carried out. The integration
of results of this analysis in the design of multiple bolted joints structures in finally
presented. Experiments on a testbed, where a viscoelastic material is introduced in joints
interfaces to enhance global damping, validate the approach developed.
REFERENCES(27)
1.
Abad J., Franco J.M., Celorrio R., Lezáun L., 2012, Design of experiments and energy dissipation analysis for a contact mechanics 3D model of frictional bolted lap joints, Advances in Engineering Software, 45, 42-53.
Crocombe A.D., Wang R., Richardson G., Underwood C.I., 2006, Estimating the energy dissipated in a bolted spacecraft at resonance, Computers and Structures, 84, 5-6, 340-350.
Giannella V., Sepe R., Citarella R., Armentani E., 2021, FEM modelling approaches of bolt connections for the dynamic analyses of an automotive engine, Applied Science, 11, 4343.
Goyder H., Ind P., Brown D., 2013, Measurement of damping due to bolted joints, International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, ASME.
Guillot J., 2007, Modélisation et calcul des assemblages vissés. Généralités, Techniques de l’ingenieur, L’expertise technique et scientifique de refrence.
Guzas E., Behan K., Davis J., 2015, 3D finite element modeling of single bolt connections under static and dynamic tension loading, Shock and Vibration, 2015, 2, 1-12.
Hammami C., Balmes E., Guskov M., 2016, Numerical design and test on an assembled structure of a bolted joint with viscoelastic damping, Mechanical Systems and Signal Processing, 70-71, 714-724.
Kellermann R., Klein C., 1955, Untersuchungen über den Einfluss der Reibung auf Vorspannung und Anzugsmoment von Schraubenverbindungen, Konstruction, 7, 2, 54-68.
Kim J., Yoon J.-C., Kang B.-S., 2007, Finite element analysis and modeling of structure with bolted joints, Applied Mathematical Modelling, 31, 5, 895-911.
Lehnhoff T.F., Ko K.I., McKay M.L., 1994,Member stiffness and contact pressure distribution of bolted joints, Journal of Mechanical Design, 116, 550-557.
Li P., Li W., Wei P., Wang Q., 2020, Research on finite element analysis and modelling of bolted joint, IOP Conference Series: Materials Science and Engineering, 892, 012084.
Mantelli M.B.H., Milanez F.H., Pereira E.N., Fletcher L.S., 2010, Statistical model for pressure distribution of bolted joints, Journal of Thermophysics and Heat Transfer, 24, 432-437.
Wang R., Crocombe A., Richardson G., Underwood C., 2005, Modelling of damping in small satellite structures incorporating bolted joints, Conference on Small Satellites, SSC05-IX-7.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.