ARTICLE
Numerical investigation of mechanical behavior of cracked cruciform specimens in aluminum alloy 6082-T6 subjected to different biaxial loading conditions
 
More details
Hide details
1
Department of Mechanical Engineering, University Mustapha Stambouli, Mascara
 
2
Laboratory of Applied Biomechanics and Biomaterials (LABAB), ENP Oran-MA, Oran
 
3
Ecole des Hautes Etudes d’Ingénieur de Lille
 
4
Lille Mechanics Laboratory (LML), University of Lille 1, Villeneuve-d’Ascq
 
 
Submission date: 2017-10-23
 
 
Acceptance date: 2019-06-02
 
 
Online publication date: 2019-10-15
 
 
Publication date: 2019-10-15
 
 
Journal of Theoretical and Applied Mechanics 2019;57(4):1021-1037
 
KEYWORDS
ABSTRACT
Analysis of cracked cruciform specimens under biaxial loading conditions is very important and closer to reality in the study of behavior of marine, naval, aeronautical and railway structures. The aim of this work is to examine the evolution of fracture parameters in a combined mixed mode of an aluminum alloy A6082-T6 cruciform specimen as a function of the biaxial loading with different ratios. To this end, the effects of main parameters, such as load ratio, crack length, crack orientation and non-proportional loading coefficient have been analyzed and discussed in order to highlight fracture toughness of the studied material. The results show that the finite element method is a useful tool for calculation of crack characteristics in the mechanics of biaxial fracture. According to the obtained results, a non-proportional evolution of the fracture parameters, namely, the SIFs KI and KII , T-stress, and the biaxiality parameter was observed. Indeed, the latter depends considerably on the crack length, the angle of crack orientation and the applied biaxial loading. Detailed concluding remarks are presented at the end of this work.
REFERENCES (32)
1.
Abd-Elhady A.A., 2014, 3D Finite element analysis of plate with small notch subjected to biaxial loading, Emirates Journal for Engineering Research, 19, 1, 27-35.
 
2.
Ayatollahi M.R., Dehghany M., Nejati M., 2011, Fracture analysis of V-notched components – Effects of first non-singular stress term, International Journal of Solids and Structures, 48, 1579-1589.
 
3.
Ayatollahi M.R., Pavier M.J., Smith D.J., 1998, Determination of T-stress from finite element analysis for mode I and mixed mode I/II loading, International Journal of Fracture, 91, 283-298.
 
4.
Betegon C., Hancock J.W., 1991, Two-parameter characterization of elastic-plastic crack-tip fields, Journal of Applied Mechanics, 58, 104-110.
 
5.
Banerjee D., Iadicola M., Creuziger A., Foecke T., 2015, An experimental and numerical study of deformation behavior of steels in biaxial tensile tests, The Minerals, Metals and Materials Society. TMS2015 Supplemental Proceedings, John Wiley & Sons, Inc., Hoboken, USA.
 
6.
Citarella R., Lepore M.A., MalignA., Shlyannikov V.N., 2015, FEM simulation of a crack propagation in a round bar under combined tension and torsion fatigue loading, Frattura and Integrit`a Strutturale, 31, 138-147.
 
7.
Dawicke D.S., Pollock W.D., 1997, Biaxial testing of 2219-T87 aluminum alloy using cruciform specimens, NASA Contractor Report 4782 Analytical Services and Materials, Inc. Hampton, Virginia National Aeronautics, 1-38.
 
8.
Eftis J., Subramonian N., 1978, The inclined crack under biaxial load, Engineering Fracture Mechanics, 10, 43-67.
 
9.
Freitas M., Reis L., Claudio R., 2014, Mutltiaxial fatigue under biaxial cruciform specimens, Annal Mechanics Fracture, 31, 441-446.
 
10.
Gdoutos E.E., 2005, Fracture Mechanics: An Introduction, Second Edition, Springer Netherlands.
 
11.
Hatanaka K., Motozawa N., Ogawa H., Sasaki N., Rokukawa S., 1997, A study on fatigue crack growth under biaxial loading using cruciform specimen, 5th International Conference on Biaxial/Multiaxial Fatigue and Fracture, Cracow’97, Poland, Technical University of Opole, 59-76.
 
12.
Khelil F., Belhouari M., Aour B., Benseddiq N., 2017, On the efficiency of the numerical evaluation of fracture parameters using a virtual strain gage method, Journal of the Brazilian Society of Mechanical Sciences and Engineering, 39, 589-599.
 
13.
Lamkanfi E., Paepegem W.V., Degrieck J., Ramault C., Makris A., van Hemelrijck D., 2010, Strain distribution in cruciform specimens subjected to biaxial loading conditions. Part 2: Influence of geometrical discontinuities, Polymer Testing, 29, 132-138.
 
14.
Leevers P.S., Radon J.C., 1982, Inherent stress biaxiality in various fracture specimen geometries, International Journal of Fracture, 19, 311-325.
 
15.
Muhsin J.J., Skaker S.H., Kahtan Y.Y., 2013, Experimental investigations of the cruciform specimen of GFRP16 under biaxial monotonic and cyclic loading, International Journal of Science Engineering Research, 4, 12, 494-501.
 
16.
Nakamura T., Parks D.M.,1992, Determination of elastic T-stress along three-dimensional crack fronts using an interaction integral, Journal of Solids and Structures, 29, 13, 1597-1611.
 
17.
Navarro-Zafra J., Curiel-Sosa J.L., Serna Moreno M.C., 2016, Three-dimensional static and dynamic analysis of a composite cruciform structure subjected to biaxial loading: a discontinuum approach, Applied Composite Materials, 23, 2, 139-154.
 
18.
Nevalainen M.J., 1997, The effect of specimen and flaw dimensions on fracture toughness, PhD Dissertation, Helsinki University of Technology, Finland.
 
19.
Novotný L., 2012, Calculation of T-stress on 3D specimens with crack, Procedia Engineering, 48, 489-494.
 
20.
Papadopoulos G.A., 1988, Crack initiation under biaxial loading, Engineering Fracture Mechanics, 29, 5, 585-598.
 
21.
Pickard A.C., 1986, The Application of 3-Dimensional Finite Element Methods to Fracture Mechanics and Fatigue Life Prediction, EMAS, Warley.
 
22.
Pickard A., 2015, Fatigue crack propagation in biaxial stress fields, Journal of Strain Analysis for Engineering Design, 50, 1, 25-39.
 
23.
Rice J.R., 1974, Limitations to the small scale yielding approximation for crack tip plasticity, Journal of the Mechanics and Physics of Solids, 22, 17-26.
 
24.
Shlyannikov V.N., 2013, T-stress for crack paths in test specimens subject to mixed mode loading, Egineering Fracture Mechanics, 108, 3-18.
 
25.
Shlyannikov V.N., Tumanov A.V., Zakharov A.P., 2014, The mixed mode crack growth rate in cruciform specimens subject to biaxial loading, Theoretical and Applied Fracture Mechanics, 73, 68-81.
 
26.
Shlyannikov, V.N., Zakharov, A.P., 2014, Multiaxial crack growth rate under variable T-stress, Engineering Fracture Mechanic, 123, 86-99.
 
27.
Sih G.C., 1966, On the Westergaard method of crack analyses, Journal of Fracture Mechanics, 2, 4, 628-631.
 
28.
Truchon M., Amestoy M., Dang-Van K., 1981, Experimental stydy of fatigue crack growth under biaxial loading, 5th International Conference on Fracture, 4, 1841-1849.
 
29.
Upadhyay M.V., Panzner T., van Petegem S., van Swygenhoven H., 2017, Stresses and strains in cruciform samples deformed in tension, Experimental Mechanics, 57, 6, 905-920.
 
30.
Williams M.L., 1957, On the stress distribution at the base of a stationary crack, Journal of Applied Mechanics, 24, 109-114.
 
31.
www.techniques-ingenieur.fr, Charactéristiques mécaniques, ALMET p57.0.
 
32.
Xiao R., Li X., Lang L., Chen Y., Ge Y., 2015, Design of biaxial tensile cruciform specimen based on simulation optimization, 2nd International Conference on Machinery, Materials Engineering, Chemical Engineering and Biotechnology (MMECEB 2015).
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top