ARTICLE
Modelling of Love-type waves in an elastic layer sandwiched between viscous liquid half space and size dependent couple stress substrate
,
 
 
 
More details
Hide details
1
School of Mathematics, Thapar Institute of Engineering and Technology, Patiala
 
 
Submission date: 2019-03-09
 
 
Acceptance date: 2019-05-31
 
 
Online publication date: 2019-10-15
 
 
Publication date: 2019-10-15
 
 
Journal of Theoretical and Applied Mechanics 2019;57(4):1009-1019
 
KEYWORDS
ABSTRACT
Dispersion curves employed for designing Love wave based liquid sensing devices may provide more accurate information if due consideration is given to parameters describing microstruc- tural behavior of the substrate. The present study involves mathematical modelling of Love waves propagating in a hybrid structure consisting of an elastic layer in the middle overlying a size dependent substrate, loaded with a viscous liquid (Newtonian) half space. Numerical computations are carried out to graphically demonstrate the effects of various parameters: characteristic length of the substrate, thickness of the elastic layer, viscosity and density of the overlying viscous liquid (Newtonian) on dispersion characteristics.
REFERENCES (23)
1.
Baroi J., Sahu S.A., Singh M.K., 2018, Dispersion of polarized shear waves in viscous liquid over a porous piezoelectric substrate, Journal of Intelligent Material Systems and Structures, 29, 9, 2040-2048.
 
2.
Eringen A.C., 1968, Theory of micropolar elasticity, Fracture, 2, 621-729.
 
3.
Ghodrati B., Yaghootian A., Zadeh A.G., Sedighi H.M., 2017, Lamb wave extraction of dispersion curves in micro/nano plates using couple stress theories,Waves in Random and Complex Media, 28, 1, 15-34.
 
4.
Gunther W., 1958, Zur Statik und Kinematik des Cosseratschen Kontinuums, Abhandlungen der Braunschweigische Wissenschaftliche Gesellschaft, 10, 195-213.
 
5.
Guo F.L., Sun R., 2008, Propagation of Bleustein-Gulyaev wave in 6 mm piezoelectric materials loaded with viscous liquid, International Journal of Solids and Structures, 45, 3699-3710.
 
6.
Hadjesfandiari A.R., Dargush G.F., 2011, Couple stress theory for solids, International Journal of Solids and Structures, 48, 2496-2510.
 
7.
Kielczynski P., Szalewski M., Balcerzak A., 2012, Effect of a viscous liquid loading on Love wave propagation, International Journal of Solids and Structures, 49, 17, 2314-2319.
 
8.
Kim J.O., 1992, The effect of a viscous fluid on Love waves in a layered media, The Journal of Acoustical Society of America, 91, 3099-3103.
 
9.
Koiter W.T., 1964, Couple stresses in the theory of elasticity I and II, Proceedings of the Koninklijke, Nederlandse Akademie van Weteschappen B, 67, 17-44.
 
10.
Kuznetsov S.V., 2010, Love waves in nondestructive diagnostics of layered composites: Survey, Acoustical Physics, 56, 6, 877-892.
 
11.
Mindlin R.D., Tiersten H.F., 1962, Effects of couple-stresses in linear elasticity, Archive for Rational Mechanics and Analysis, 11, 415-488.
 
12.
Nowacki W., 1974, Micropolar Elasticity, International Center for Mechanical Sciences, Courses and Lectures, 151, Udine, Springer-Verlag, Wien-New York.
 
13.
Rocha-Gaso M.I., March-Iborra C., Montoya-Baides A., Arnau-Vives A., 2009, Surface generated acoustic wave biosensors for the detection of Pathogens: A review, Sensors, 9, 5740-5769.
 
14.
Sahu S.A., Saroj P.K., Dewangan N., 2014, SH-waves in viscoelastic heterogeneous layer over half-space with self-weight, Archive of Applied Mechanics, 84, 235-245.
 
15.
Shah V.V., Balasubramaniam K., 2000, Measuring Newtonian viscosity from the phase of reflected ultrasonic shear wave, Ultrasonics, 38, 921-927.
 
16.
Sharma V., Kumar S., 2014, Velocity dispersion in an elastic plate with microstructure: effects of characteristic length in a couple stress model, Meccanica, 49, 1083-1090.
 
17.
Sharma V., Kumar S., 2017, Dispersion of SH waves in a viscoelastic layer imperfectly bonded with a couple stress substrate, Journal of Theoretical and Applied Mechanics, 55, 2, 535-546.
 
18.
Sharma V., Kumar S., 2018, Effects of microstructure and liquid loading on velocity dispersion of leaky Rayleigh waves at liquid-solid interface, Canadian Journal of Physics, 96, 1, 11-17.
 
19.
Toupin R.A., 1962, Elastic materials with couple-stresses, Archive for Rational Mechanics and Analysis, 11, 385-414.
 
20.
Vellekoop M.J., 1998, Acoustic wave sensors and their technology, Ultrasonics, 36, 7-14.
 
21.
Vikstrom A., Voinova M.V., 2016, Soft-film dynamics of SH-SAW sensors in viscous and viscoelastic fluids, Sensing and Bio-Sensing Research, 11, 78-85.
 
22.
Wang W., Oh H., Lee K., Yang S., 2008, Enhanced sensitivity of wireless chemical sensor based on Love wave mode, Journal of Applied Physics, 47, 7372-7379.
 
23.
Xu Z., Yuan J.Y., 2018, Implementation of guiding layers of surface acoustic wave devices: A review, Biosensors and Bioelectronics, 99, 500-512.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top