ARTICLE
Influence of geometrical defects on aerodynamic drag of non-watertight Ahmed body
,
 
,
 
 
 
More details
Hide details
1
Tianjin, CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., China
 
 
Submission date: 2024-01-05
 
 
Final revision date: 2024-05-24
 
 
Acceptance date: 2024-10-22
 
 
Online publication date: 2024-10-30
 
 
Corresponding author
Xuelong Liu   

Tianjin, CATARC (Tianjin) Automotive Engineering Research Institute Co., Ltd., China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
In order to overcome the numerical instability problem of LBM (Lattice Boltzmann Method) in high Reynolds number scenarios, The LBM-based TF-Lattice software used in this paper adopts the hybrid-recursive-regularized (HRR) model for the LBM collision operator and the WALE model for turbulence modelling. We firstly performed a fluid dynamics simulation of the Ahmed model with different back inclinations (0°-35°) using the TF-Lattice software. The calculated results are generally consistent with the experimental and simulation results in the literature, and the errors of the drag coefficients compared with experimental data under all conditions are within 5%.
 
REFERENCES (24)
1.
Ahmed S.R., Ramm G., Faltin G., 1984, Some Salient Features of the Time-Averaged Ground Vehicle Wake, SAE Technical Paper Series, DOI: 10.4271/840300.
 
2.
Bayraktar I., Landman D., Baysal O., 2001, Experimental and Computational Investigation of Ahmed body for Ground Vehicle Aerodynamics, SAE Technical Paper Series, DOI: 10.4271/2001-01-2742.
 
3.
Bhatnagar P.L., Gross E.P., Krook M., 1954, A model for collision processes in gases. I. Small amplitude processes in charged and neutral one-component systems, Physical Review, 94, 3, 511-525.
 
4.
Chen S., Doolen G.D., 1998, Lattice Boltzmann Method for fluid flows, Annual Review of Fluid Mechanics, 30, 329-364.
 
5.
ERCOFTAC Knowledge Base Wiki, page “Ahmed body”, 2023, https://www.kbwiki.ercoftac.or....
 
6.
Fares E., 2006, Unsteady flow simulation of the Ahmed reference body using a lattice Boltzmann approach, Computers and Fluids, 35, 8-9, 940-950.
 
7.
Gilliéron P., Chometon F., 1999,Modelling of stationary three-dimensional separated air flows around an Ahmed reference model, ESAIM: Proceedings, 7, 173-182.
 
8.
Han T., 1989, Computational analysis of three-dimensional turbulent flow around a bluff body in ground proximity, AIAA Journal, 27, 9, 1213-1219.
 
9.
He X., Luo L.-S., 1997, Theory of the lattice Boltzmann method: from the Boltzmann equation to the lattice Boltzmann equation, Physical Review E, 56, 6, 6811.
 
10.
Heft A.I., Indinger T., Adams N.A., 2012, Introduction of a new realistic generic car model for aerodynamic investigations, SAE Technical Paper Series, DOI: 10.4271/2012-01-0168.
 
11.
Hinterberger C., García-Villalba M., Rodi W., 2004, Large eddy simulation of flow around the Ahmed body, [In:] McCallen R., Browand F., Ross J. (Eds.), The Aerodynamics of Heavy Vehicles: Trucks, Buses, and Trains, Conference Proceedings, Lecture Notes in Applied and Computational Mechanics, 19, Springer, 77-87.
 
12.
Holman D.M., Brionnaud R.M., Abiza Z., 2012, Solution to Industry Benchmark Problems with the Lattice-Boltzmann Code Xflow, European Congress on Computational Methods in Applied Sciences and Engineering (ECCOMAS 2012), Eberhardsteiner J. et al. (Eds.), Vienna, Austria.
 
13.
Jacob J., Malaspinas O., Sagaut P., 2018, A new hybrid recursive regularised Bhatnagar-Gross-Krook collision model for lattice Boltzmann method-based large eddy simulation, Journal of Turbulence, 19, 11-12, 1051-1076.
 
14.
Johnson T.A., Patel V.C., 1999, Flow past a sphere up to a Reynolds number of 300, Journal of Fluid Mechanics, 1999, 378, 19-70.
 
15.
Keating A., Shock R., Chen H., 2008, Lattice Boltzmann Simulations of the Unsteady Flow Behind the Ahmed Body, SAE Technical Paper Series, DOI: 10.4271/2008-01-0740.
 
16.
Keogh J., Barber T., Diasinos S., Doig G., 2016, The aerodynamic effects on a cornering Ahmed body, Journal of Wind Engineering and Industrial Aerodynamics, 154, 34-46.
 
17.
Kotapati R., Keating A., Kandasamy S., Duncan B., Shock R., Chen H., 2009, The Lattice-Boltzmann-VLES Method for Automotive Fluid Dynamics Simulation, a Review, SAE Technical Paper Series, DOI: 10.4271/2009-26-0057.
 
18.
Lienhart H., Becker S., 2003, Flow and Turbulence Structure in the Wake of a Simplified Car Model, SAE Technical Paper Series, DOI: 10.4271/2003-01-0656.
 
19.
Malaspinas O., 2015, Increasing stability and accuracy of the lattice Boltzmann scheme: recursivity and regularization, ArXiv preprint, 1505.06900.
 
20.
Nagata T. Nonomura T., Takahashi S., Mizuno Y., Fukuda K., 2016, Investigation on subsonic to supersonic flow around a sphere at low Reynolds number of between 50 and 300 by direct numerical simulation, Physics of Fluids, 28, 5, 056101.
 
21.
Qian Y.-H., D’Humières D., Lallemand P., 1992, Lattice BGK models for Navier-Stokes equation, Europhysics Letters, 17, 6, 479-484.
 
22.
Schiller L., Naumann A.Z., 1933, Uber die grundlegenden Berechnungen bei der Schwerkraftaufbereitung, Vereines Deutscher Ingenieure, 77, 318-320.
 
23.
Sheard G.J., Hourigan K., Thompson M.C., 2005, Computations of the drag coefficients for low-Reynolds-number flow past rings, Journal of Fluid Mechanics, 526, 257-275.
 
24.
Strachan R.K., Knowles K., Lawson N.J., 2007, The vortex structure behind an Ahmed reference model in the presence of a moving ground plane, Experiments in Fluids, 42, 5, 659-669.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top