ARTICLE
Improved hyperelastic material characterization using measurement data pre-processing
 
More details
Hide details
1
eCon Engineering Ltd, Budapest, Hungary
 
2
Department of Applied Mechanics, Faculty of Mechanical Engineering, Budapest University of Technology and Economics, Budapest, Hungary
 
These authors had equal contribution to this work
 
 
Submission date: 2024-12-14
 
 
Final revision date: 2025-03-13
 
 
Acceptance date: 2025-05-19
 
 
Online publication date: 2025-06-25
 
 
Corresponding author
Andras Aninger   

Simulation unit, eCon Engineering Ltd., Kondorosi ut 3, H-1116, Budapest, Hungary
 
 
 
KEYWORDS
TOPICS
ABSTRACT
Mechanical characterization of elastomers is a long-studied but still challenging area. Finite element solvers offer a great variety of hyperelastic models; however, no straightforward selection process is provided. This paper presents a methodology for high-fidelity hyperelastic parameter fitting tailored for elastomers. One of its main components is a pre-processing module, which helps select the most suitable model based on all information extractable from the measured stress-strain curves. In this contribution, the concept of the pre-processing module is presented, while its efficiency is demonstrated through benchmark fitting processes using the Treloar dataset and an experimental dataset of an nitril butadiene rubber (NBR) specimen.
REFERENCES (16)
1.
Anssari-Benam, A., Bucchi, A., Destrade, M., & Saccomandi, G. (2022). The generalised Mooney space for modelling the response of rubber-like materials. Journal of Elasticity, 151 (1), 127–141. https://doi.org/10.1007/s10659....
 
2.
Arruda E.M., Boyce M.C. (1993). A three-dimensional constitutive model for the large stretch behavior of rubber elastic materials, Journal of the Mechanics and Physics of Solids, 41 (2), 389–412. https://doi.org/10.1016/0022-5....
 
3.
Bergström, J. (2015). Mechanics of solid polymers. Theory and computational modeling. William Andrew.
 
4.
Doghri, I. (2000). Mechanics of deformable solids. Linear and nonlinear, analytical and computational aspects. Springer Berlin Heidelberg. https://doi.org/10.1007/978-3-....
 
5.
Gent, A.N. (1996). A new constitutive relation for rubber. Rubber Chemistry and Technology, 69 (1), 59–61. https://doi.org/10.5254/1.3538....
 
6.
Gent, A.N., & Thomas, A.G. (1958). Forms for the stored (strain) energy function for vulcanized rubber. Journal of Polymer Science, 28 (118), 625–628. https://doi.org/10.1002/pol.19....
 
7.
He, H., Zhang, Q., Zhang, Y., Chen, J., Zhang, L., & Li, F. (2022). A comparative study of 85 hyperelastic constitutive models for both unfilled rubber and highly filled rubber nanocomposite material. Nano Materials Science, 4 (2), 64–82. https://doi.org/10.1016/j.nano....
 
8.
Holzapfel, G.A. (2010). Nonlinear solid mechanics: a continuum approach for engineering. Wiley.
 
9.
Mooney, M. (1940). A theory of large elastic deformation. Journal of Applied Physics, 11 (9), 582–592. https://doi.org/10.1063/1.1712....
 
10.
Newville, M., Otten, R., Nelson, A., Stensitzki, T., Ingargiola, A., Allan, D., Fox, A., Carter, F., Michał, Osborn, R., Pustakhod, D., Weigand, S., lneuhaus, Aristov, A., Glenn, Mark, mgunyho, Deil, C., Hansen, A.L.R., ... Persaud, A. (2024). lmfit/lmfit-py: 1.3.2 (1.3.2). Zenodo. https://doi.org/10.5281/zenodo...
 
11.
Ogden, R.W. (1972). Large deformation isotropic elasticity – on the correlation of theory and experiment for incompressible rubberlike solids. Proceedings of the Royal Society A. Mathematical, Physical and Engineering Sciences, 326 (1567), 565–584. https://doi.org/10.1098/rspa.1....
 
12.
Qi, H.J., Joyce, K., & Boyce, M.C. (2003). Durometer hardness and the stress-strain behavior of elastomeric materials. Rubber Chemistry and Technology, 76 (2), 419–435. https://doi.org/10.5254/1.3547....
 
13.
Rivlin, R.S., & Saunders, D.W. (1951). Large elastic deformations of isotropic materials VII. Experiments on the deformation of rubber. Philosophical Transactions of the Royal Society A. Mathematical, Physical and Engineering Sciences, 243 (865), 251–288. https://doi.org/10.1098/rsta.1....
 
14.
Treloar, L.R.G. (1944). Stress-strain data for vulcanised rubber under various types of deformation. Transactions of the Faraday Society, 40, 59–70. https://doi.org/10.1039/tf9444....
 
15.
Treloar, L.R.G. (2005). The physics of rubber elasticity (3rd ed.). Oxford Classic Texts in the Physical Sciences. Oxford University Press.
 
16.
Yeoh, O.H. (1990). Characterization of elastic properties of carbon-black-filled rubber vulcanizates. Rubber Chemistry and Technology, 63 (5), 792–805. https://doi.org/10.5254/1.3538....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top