ARTICLE
Evolutionary identification of microstructure parameters in the thermoelastic porous material
 
More details
Hide details
1
Silesian University of Technology, Department of Computational Mechanics and Engineering, Gliwice, Poland
 
 
Submission date: 2019-11-27
 
 
Final revision date: 2020-01-14
 
 
Acceptance date: 2020-01-16
 
 
Online publication date: 2020-04-15
 
 
Publication date: 2020-04-15
 
 
Corresponding author
Adam Długosz   

Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18a, 44-100, Gliwice, Poland
 
 
Journal of Theoretical and Applied Mechanics 2020;58(2):373-384
 
KEYWORDS
TOPICS
ABSTRACT
The work is devoted to the identification of microstructure parameters of a porous body under thermal and mechanical loads. The goal of the identification is to determine the parameters of the microstructure on the basis of measurements of displacements and temperatures at the macro level. A two-scale 3D coupled thermomechanical model of porous aluminum is considered. The representative volume element (RVE) concept modeled with periodical boundary conditions is assumed. Boundary-value problems for RVEs (micro-scale) are solved by means of the finite element method (FEM). An evolutionary algorithm (EA) is used for the identification as the optimization technique.
 
REFERENCES (24)
1.
Auriault J., Boutin C., Geindreau C., 2009, Homogenization of Coupled Phenomena in Heterogenous Media, ISTE Ltd. and John Wiley & Sons, Inc., London.
 
2.
Beer G., 1983, Finite element, boundary element and coupled analysis of unbounded problems in elastostastics, International Journal for Numerical Methods in Engineering, 19, 567-580.
 
3.
Burczyński T., Beluch W., Długosz A., Skrobol A., Orantek P., 2006, Intelligent computing in inverse problems, Computer Assisted Mechanics and Engineering Sciences, 13, 1, 161-206.
 
4.
Buyrachenko V., 2007,Micromechanics of Heterogeneous Materials, Springer Science + Business Media.
 
5.
Carter J., Booker J., 1989, Finite Element Analysis of Coupled Thermoelasticity, Computer and Structures, 31, 1, 73-80.
 
6.
Długosz A., 2014, Optimization in multiscale thermoelastic problems, Computer Methods in Materials Science, 14, 1, 86-93.
 
7.
Długosz A., Burczyński T., 2013, Identification in multiscale thermoelastic problems, Computer Assisted Mechanics and Engineering Sciences, 20, 4, 325-336.
 
8.
Długosz A., Schlieter T., 2013, Multiobjective optimization in two-scale thermoelastic problems for porous solids, Engineering Transactions, 60, 4, 449-456.
 
9.
El Moumen, A., Kanit T., Imad A., and El Minor H., 2015, Computational thermal conductivity in porous materials using homogenization techniques: numerical and statistical approaches, Computational Materials Science, 97, 148-158.
 
10.
Fish J., 2006, Bridging the scales in nano engineering and science, Journal of Nanoparticle Research, 8, 577-594.
 
11.
Fish J., 2008, Bridging the Scales in Science and Engineering, Oxford University Press.
 
12.
Kouznetsova V., Geers M., Brekelmans W., 2004, Multi-scale second-order computational homogenization of multi-phase materials: a nested finite element solution strategy, Computer Methods in Applied Mechanics and Engineering, 193, 5525-5550.
 
13.
Michalewicz Z., 1992, Genetic Algorithms + Data Structures = Evolutionary Programs, Springer-Verlag, Berlin.
 
14.
Michalewicz Z., Fogel D.B., 2004, How to Solve It: Modern Heuristics, 2nd edition, Springer-Verlag.
 
15.
MSC.MARC, 2017, Theory and user information, vol. A-D, MSC Software Corporation.
 
16.
Nowacki W., 1972, Thermoelasticity, Ossolineum, Wrocław.
 
17.
Ogierman W., Kokot G., 2016, Identification of elastic properties of individual material phases by coupling of micromechanical model and evolutionary algorithm, Mechanika, 22, 5, 337-342.
 
18.
Ptaszny J., Hatłas M., 2018, Evaluation of the FMBEM efficiency in the analysis of porous structures, Engineering Computation, 35, 2, 843-866.
 
19.
Qiang C., Wang G., Pindera M.J., 2018, Finite-volume homogenization and localization of nanoporous materials with cylindrical voids. Part 1: Theory and validation, European Journal of Mechanics – A/Solids, 70, 141-155.
 
20.
Terada K., Kurumatani M., Ushida T., Kikuchi N., 2010, A method of two-scale thermomechanical analysis for porous solids with micro-scale heat transfer, Computional Mechanics, 46, 269-285.
 
21.
Zhodi T.I.,Wriggers P., 2008, Introduction to Computational Micromechanics, Springer-Verlag, Berlin, Heidelberg.
 
22.
Zhuang X., Wang Q., Zhu H., 2015, A 3D computational homogenization model for porous material and parameters identification, Computational Materials Science, 96, 536-548.
 
23.
Zienkiewicz O.C., Taylor R.L., 2005, The Finite Element Method, Vol. 1-3, Elsevier, 6th edition, Oxford, United Kingdom.
 
24.
Živcová Z., Gregorová E., Pabst W., Smith D., Michot A., Poulier C., 2009, Thermal conductivity of porous alumina ceramics prepared using starch as a pore-forming agent, Journal of the European Ceramic Society, 29, 347-353.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top