Implantation of synthetic meshes provokes complications which require long-lasting follow-up. The mesh materials exposed to physiological conditions demonstrate differences in failure
load, stiffness and extension. Mechanical alterations of explants made of polyester were
investigated using a uni-axial tensile test and a relaxation test. The tensile strength of the
explanted meshes changed in the transversal direction. The elastic modulus in the same
direction increased two times. A magnified mesh image displayed mesh alteration. The relaxation
tests revealed that the initial stress decreases after implantation while the reduction
of stress increases in the interval 50%-96.6%.
REFERENCES(26)
1.
Amid P., 1997, Classification of biomaterials and their related complications in abdominal wall surgery, Hernia, 1, 1, 15-21.
Bellón J.M., Serrano N., Rodriguez M., Garcia-Honduvilla N., Pascual G., Buján J., 2005, Composite prostheses used to repair abdominal wall defects: physical or chemical adhesion barriers?, Journal of Biomedical Materials Research Part B, 74, 2, 718-724.
Chelala E., Debardemaeker Y., Elias B., Charara F., Dessily M., Allé J.L., 2010, Eighty-five redo surgeries after 733 laparoscopic treatments for ventral and incisional hernia: adhesion and recurrence analysis, Hernia, 14, 2, 123-129.
Deeken C.R., Abdo M.S., Frisella M.M., Matthews B.D., 2011, Physicomechanical evaluation of polypropylene, polyester, and polytetrafluoroethylene meshes for inguinal hernia repair, Journal of the American College of Surgeons, 212, 1, 68-79.
Deerenberg E.B., Verhelst J., Hovius S.E.R., Lange J.F., 2016, Mesh expansion as the cause of bulging after abdominal wall hernia repair, International Journal of Surgery Case Reports, 28, 200-203.
Hawn M.T., Gray S.H., Snyder C.W., Graham L.A., Finan K.R., Vick C.C., 2011, Predictors of mesh explantation after incisional hernia repair, American Journal of Surgery, 202, 1, 28-33.
Jacob B.P., Hogle N.J., Durak E., Kim T., Fowler D.L., 2007, Tissue ingrowth and bowel adhesion formation in an animal study: polypropylene vs. Proceed vs. Parietex Composite, Surgical Endoscopy, 21, 4, 629-633.
Judge T.W., Parker D.M., Dinsmore R.C., 2007, Abdominal wall hernia repair: a comparison of Sepramesh and Parietex Composite mesh in a rabbit hernia model, Journal of the American College of Surgeons, 204, 2, 276-281.
Kayaoglu H.A., Ozkan N., Hazinedaroglu S.M., Ersoy O.F., Erkek A.B., Koseoglu R.D., 2005, Comparison of adhesive properties of five different prosthetic materials used in hernioplasty, Journal of Investigative Surgery, 18, 2, 89-95.
Kirilova-Doneva M., Pashkouleva D., 2019, Long-term mechanical compatibility of polypropylene surgical meshes, Journal of Mechanics in Medicine and Biology, 19, 6, 1950056.
Kirilova-Doneva M., Pashkouleva D., Kavardzhikov V., Sopotensky S., Petrova G., Gerasimov N., 2015, Evaluation of mechanical alterations of explanted hernia mesh, Series on Biomechanics, 29, 2-3, 73-77.
Klinge U., Klosterhalfen B., Conze J., Limberg W., Obolenski B., Ottinger A.P., Schumpelick V., 1998, Modified mesh for hernia repair that is adapted to the physiology of the abdominal wall, The European Journal of Surgery, 164, 12, 951-960.
Klosterhalfen B., Junge K, Klinge U., 2005, The lightweight and large porous mesh concept for hernia repair, Expert Review of Medical Devices, 2, 1, 103-117.
Klosterhalfen B., Klinge U., 2013, Retrieval study at 623 human mesh explants made of polypropylene impact of mesh class and indication for mesh removal on tissue reaction, Journal of Biomedical Materials Research Part B, 101, 8, 1393-1399.
Lubowiecka I., Szepietowska K., Szymczak C., Tomaszewska A., 2016, A preliminary study on the optimal choice of an implant and its orientation in ventral hernia repair, Journal of Theoretical and Applied Mechanics, 54, 2, 411-421.
McGinty J.J., Hogle N.J., McCarthy H., Fowler D.L., 2005, A comparative study of adhesion formation and abdominal wall ingrowth after laparoscopic ventral hernia repair in a porcine model using multiple types of mesh, Surgical Endoscopy, 19, 6, 786-790.
Moreno-Egea A., Bustos J.A., Girela E., Aguayo-Albasini J.L., 2010, Long-term results of laparoscopic repair of incisional hernias using an intraperitoneal composite mesh, Surgical Endoscopy, 24, 2, 359-365.
Sanbhal N., Miao L., Xu R., Khatri A., Wang L., 2018, Physical structure and mechanical properties of knitted hernia mesh materials, Journal of Industrial Textiles, 19, 6, 1266-1270.
Song Ch., Alijani A., Frank T., Hanna G., Cuschieri A., 2006, Elasticity of the living abdominal wall in laparoscopic surgery, Journal of Biomechanics, 39, 587-591.
Tran D., Podwojewski F., Beillas P., Ottenio M., Voirin D., Turquier F., Mitton D., 2016, Abdominal wall muscle elasticity and abdomen local stiffness on healthy volunteers during various physiological activities, Journal of Mechanical Behavior of Biomedical Materials, 60, 451-459.
Wood A.J., Cozad M.J., Grant D.A., Ostdiek A.M., Bachman S.L., Grant S.A., 2013, Materials characterization and histological analysis of explanted polypropylene, PTFE, and PET hernia meshes from an individual patient, Journal of Materials Science: Materials in Medicine, 24, 4, 1113-1122.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.