To overcome the disadvantage of decreasing the braking performance of a magnetorheological
fluid at high temperatures, a method of combined braking of a shape memory alloy and a
magnetorheological fluid is proposed in this paper. The braking torque does not decrease
with increasing temperature. Based on the magnetorheological characteristics, the braking
torque equation of the magnetorheological fluid is established. Based on the characteristics of
the thermal effect, the brake torque equations generated by the shape memory alloy springs
are established. This paper provides a basis for the design and manufacture of the shape
memory alloy and magnetorheological fluid combined brake system through experiments
and theoretical analysis.
REFERENCES(19)
1.
Aguiar R.A.A., Savi M.A., Pacheco P.M.C.L., 2010, Experimental and numerical investigations of shape memory alloy helical springs, Smart Materials and Structures, 19, 025008.
An S., Ryu J., Cho M., Cho K., 2012, Engineering design framework for a shape memory alloy coil spring actuator using a static two-state model, Smart Materials and Structures, 21, 55009.
Huang J., Zhang J.Q., Yang Y., Wei Y.Q., 2002, Analysis and design of a cylindrical magnetorheological fluid brake, Journal of Materials Processing Technology, 129, 559-562.
Hwang Y.H., Kang S.R., Cha S.W., Choi S.B., 2019, A robot-assisted cutting surgery of human-like tissues using a haptic master operated by magnetorheological clutches and brakes, Smart Materials and Structures, 28, 065016.
Li W.H., Du H., 2003, Design and experimental evaluation of a magnetorheological brake, International Journal of Advanced Manufacturing Technology, 21, 508-515.
Ma J., Huang H., Huang J., 2013, Characteristics analysis and testing of SMA spring actuator, Advances in Materials Science and Engineering, 2013, 1-7.
Mirzaeifar R., DesRoches R., Yavari A., 2011, A combined analytical, numerical, and experimental study of shape-memory-alloy helical springs, International Journal of Solids and Structures, 48, 611-624.
Mohd J.J., Leary M., Subic A., Gibson M.A., 2014, A review of shape memory alloy research, applications and opportunities, Materials and Design, 56, 1078-1113.
Muthalif A.G.A., Kasemi H.B., Nordin N.H.D., Rashid M.M., Razali M.K.M., 2017, Semi-active vibration control using experimental model of magnetorheological damper with adaptive F-PID controller, Smart Structures and Systems, 20, 85-97.
Sun T., Peng X., Li J., Feng C., 2013, Testing device and experimental investigation to influencing factors of magnetorheological fluid, International Journal of Applied Electromagnetics and Mechanics, 43, 283-292.
Wang D.M., Hou Y.F., Tian Z.Z., 2013, A novel high-torque magnetorheological brake with a water cooling method for heat dissipation, Smart Materials and Structures, 22, 025019.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.