ARTICLE
Asymmetric Duffing oscillator: the birth and build-up of a period-doubling cascade
 
More details
Hide details
1
Kielce University of Technology, Kielce, Poland
 
These authors had equal contribution to this work
 
 
Submission date: 2024-01-08
 
 
Final revision date: 2024-04-22
 
 
Acceptance date: 2024-09-27
 
 
Online publication date: 2024-10-03
 
 
Corresponding author
Andrzej Okniński   

Faculty of Management and Computer Modelling, Politechnika Świętokrzyska, Al. 1000-lecia PP 7, 25-314, Kielce, Poland
 
 
 
KEYWORDS
TOPICS
ABSTRACT
We investigate the period-doubling phenomenon in aperiodically forced asymmetric Duffing oscillator. We use the known steady-state asymptotic solution – the amplitude-frequency implicit function – and known criterion for the existence of period-doubling, also in an implicit form. Working in the framework of differential properties of implicit functions, we derive analytical formulas for the birth of period-doubled solutions.
 
REFERENCES (12)
1.
Feigenbaum M.J., 1978, Quantitative universality for a class of nonlinear transformations, Journal of Statistical Physics, 19, 25-52.
 
2.
Fikhtengol’ts G.M., 1965, The Fundamentals of Mathematical Analysis, I.N. Sneddon (Edit.), 2, Chapter 19, Elsevier (translated from Russian).
 
3.
Jordan D.W., Smith P., 1999, Nonlinear Ordinary Differential Equations: An Introduction to Dynamical Systems, Oxford University Press, New York.
 
4.
Kovacic I., Brennan M.J., 2011, Forced harmonic vibration of an asymmetric Duffing oscillator, [In:] The Duffing Equation: Nonlinear Oscillators and Their Behavior, I. Kovacic, M.J. Brennan (Edit.), John Wiley & Sons, Hoboken, New Jersey, 277-322.
 
5.
Kyzioł J., Okniński A., 2022, Localizing bifurcations in non-linear dynamical systems via analytical and numerical methods, Processes, 10, 1, 127
 
6.
Kyzioł J., Okniński A., 2023, Asymmetric Duffing oscillator: jump manifold and border set, Nonlinear Dynamics and Systems Theory, 23, 1, 46-57.
 
7.
Nusse H.E., Yorke J.A., 1998, Dynamics: Numerical Explorations, Accompanying Computer Program Dynamics, Applied Mathematical Sciences, 101, Springer.
 
8.
Szemplińska-Stupnicka W., 1987, Secondary resonances and approximate models of routes to chaotic motion in non-linear oscillators, Journal of Sound and Vibration, 113, 1, 155-172.
 
9.
Szemplińska-Stupnicka W., 1988, Bifurcations of harmonic solution leading to chaotic motion in the softening type Duffing’s oscillator, International Journal of Non-Linear Mechanics, 23, 4, 257-277.
 
10.
Szemplińska-Stupnicka W., Bajkowski J., 1986, The 12 subharmonic resonance and its transition to chaotic motion in a non-linear oscillator, International Journal of Non-Linear Mechanics, 21, 5, 401-419.
 
11.
Wolfram Research, Inc., 2020, Mathematica, Version 12.1, Champaign, IL.
 
12.
Xu Y., Luo A.C.J., 2020, Independent period-2 motions to chaos in a van der Pol-Duffing oscillator, International Journal of Bifurcation and Chaos, 30, 15, 2030045.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top