ARTICLE
A new nondeterministic method for optimal selection of master degrees of freedom for dynamic condensation based on evolutionary optimization
 
 
More details
Hide details
1
Silesian University of Technology, Department of Computational Mechanics and Engineering, Gliwice, Poland
 
 
Submission date: 2019-11-29
 
 
Acceptance date: 2020-02-14
 
 
Online publication date: 2020-04-15
 
 
Publication date: 2020-04-15
 
 
Corresponding author
Waldemar Mucha   

Department of Computational Mechanics and Engineering, Silesian University of Technology, Konarskiego 18A, 44-100, Gliwice, Poland
 
 
Journal of Theoretical and Applied Mechanics 2020;58(2):445-458
 
KEYWORDS
TOPICS
ABSTRACT
The following paper presents a new method for choosing a set of master degrees of freedom for the process of dynamic condensation in order to reduce a finite element model. The general rule is that the more degrees of freedom are eliminated, the more accurate the reduced model is. However, eliminating different subsets (of equal sizes) of degrees of freedom may influence the accuracy differently. Therefore, choosing an optimal subset is crucial. The presented method is based on multicriterial evolutionary optimization which makes it the first nondeterministic approach based on computational optimization technique for this application.
REFERENCES (41)
1.
Antoulas A.C., 2005, An overview of approximation methods for large-scale dynamical systems, Annual Reviews in Control, 29, 181-190, DOI: 10.1016/j.arcontrol.2005.08.002.
 
2.
Audette M.A., Hayward V., Astley O., Doyon M., McCallister G.A., Chinzei K., 2004, A PC-based system architecture for real-time finite element-based tool-specific surgical simulation, International Congress Series, 1268, 378-383, DOI: 10.1016/j.ics.2004.03.294.
 
3.
Bai Z., 2002, Krylov subspace techniques for reduced-order modeling of large-scale dynamical systems, Applied Numerical Mathematics, 43, 9-44, DOI: 10.1016/S0168-9274(02)00116-2.
 
4.
Beluch W., Długosz A., 2016, Multiobjective and multiscale optimization of composite materials by means of evolutionary computations, Journal of Theoretical and Applied Mechanics, 54, 397-409, DOI: 10.15632/jtam-pl.54.2.397.
 
5.
Berkley J., Turkiyyah G., Berg D., Ganter M., Weghorst S., 2004, Real-time finite element modeling for surgery simulation: an application to virtual suturing, IEEE Transactions on Visualization and Computer Graphics, 10, 314-325, DOI: 10.1109/TVCG.2004.1272730.
 
6.
Besselink B., Tabak U., Lutowska A., Wouw N. van de Nijmeijer H., Rixen D.J., Hochstenbach M.E., Schilders W.H.A., 2013, A comparison of model reduction techniques from structural dynamics, numerical mathematics and systems and control, Journal of Sound and Vibration, 332, 4403-4422, DOI: 10.1016/j.jsv.2013.03.025.
 
7.
Bouhaddi N., Fillod R., 1992, A method for selecting master DOF in dynamic substructuring using the Guyan condensation method, Computers and Structures, 45, 941-946, DOI: 10.1016/0045-7949(92)90052-2.
 
8.
Burczyński T., Poteralski A., Szczepanik M., 2015, Immune and swarm optimization of structures, [In:] Advances in Evolutionary and Deterministic Methods for Design, Optimization and Control in Engineering and Sciences, D. Greiner, B. B. Galván, J. Périaux, N. Gauger, K. Giannakoglou, G. Winter (Eds.), Springer International Publishing, Cham, 295-308, DOI: 10.1007/978-3-319-11541-2 19.
 
9.
Chaturantabut S., Sorensen D.C., 2010, Nonlinear model reduction via discrete empirical interpolation, SIAM Journal on Scientific Computing, 32, 2737-2764, DOI: 10.1137/090766498.
 
10.
Chen S.-H., Pan H.H., 1988, Guyan reduction, Communications in Applied Numerical Methods, 4, 549-556, DOI: 10.1002/cnm.1630040412.
 
11.
de Klerk D., Rixen D.J., Voormeeren S.N., 2008, General framework for dynamic substructuring: history, review and classification of techniques, AIAA Journal, 46, 1169-1181, DOI: 10.2514/1.33274.
 
12.
Deb K., Pratap A., Agarwal S., Meyarivan T., 2002, A fast and elitist multiobjective genetic algorithm: NSGA-II, IEEE Transactions on Evolutionary Computation, 6, 182-197, DOI: 10.1109/4235.996017.
 
13.
Downs B., 1980, Accurate reduction of stiffness and mass matrices for vibration analysis and a rationale for selecting master degrees of freedom, Journal of Mechanical Design, 102, 412-416, DOI: 10.1115/1.3254760.
 
14.
Drazin P.L., Govindjee S., 2017, Hybrid simulation theory for a classical nonlinear dynamical system, Journal of Sound and Vibration, 392, 240-259, DOI: 10.1016/j.jsv.2016.12.034.
 
15.
Duriez C., 2013, Control of elastic soft robots based on real-time finite element method, [In:] 2013 IEEE International Conference on Robotics and Automation. Presented at the 2013 IEEE Intenational Conference on Robotics and Automation, 3982-3987, DOI: 10.1109/ICRA.2013.6631138.
 
16.
Friswell M.I., Garvey S.D., Penny J.E.T., 1995,Model reduction using dynamic and iterative IRS technique, Journal of Sound and Vibration, 186, 311-323.
 
17.
Friswell M.I., Garvey S.D., Penny J.E.T., 1998, The convergence of the iterated IRS method, Journal of Sound and Vibration, 211, 123-132, DOI: 10.1006/jsvi.1997.1368.
 
18.
Guyan R.J., 1965, Reduction of stiffness and mass matrices, AIAA Journal, 3, 380.
 
19.
Henshell R.D., Ong J.H., 1974, Automatic masters for eigenvalue economization, Earthquake Engineering and Structural Dynamics, 3, 375-383, DOI: 10.1002/eqe.4290030408.
 
20.
Jin Y., 2011, Surrogate-assisted evolutionary computation: Recent advances and future challenges, Swarm and Evolutionary Computation, 1, 61-70, DOI: 10.1016/j.swevo.2011.05.001.
 
21.
Kim K.-O., Choi Y.-J., 2000, Energy method for selection of degrees of freedom in condensation, AIAA Journal, 38, 1253-1259, DOI: 10.2514/2.1095.
 
22.
Lapeer R.J., Gasson P.D., Karri V., 2010, Simulating plastic surgery: From human skin tensile tests, through hyperelastic finite element models to real-time haptics, Progress in Biophysics and Molecular Biology, 103, 208-216, DOI: 10.1016/j.pbiomolbio.2010.09.013.
 
23.
Leung Y.-T., 1979, An accurate method of dynamic substructuring with simplified computation, International Journal for Numerical Methods in Engineering, 14, 1241-1256, DOI: 10.1002/nme.1620140809.
 
24.
Levy R., 1971, Guyan reduction solutions recycled for improved accuracy, Technical Report No.19710026790, NASTRAN: Users Experiences, NASA, Langley Res. Center.
 
25.
Li W., 2003, A degree selection method of matrix condensations for eigenvalue problems, Journal of Sound and Vibration, 259, 409-425, DOI: 10.1006/jsvi.2002.5336.
 
26.
Matta K.W., 1987, Selection of degrees of freedom for dynamic analysis, Journal of Pressure Vessel Technology, 109, 65-69, DOI: 10.1115/1.3264857.
 
27.
Mokeyev V.V., 1998, A frequency condensation method for the eigenvalue problem, Communications in Numerical Methods in Engineering, 14, 1-8.
 
28.
Mrozek A., Kuś W., Burczyński T., 2015, Nano level optimization of graphene allotropes by means of a hybrid parallel evolutionary algorithm, Computational Materials Science, 106, 161-169, DOI: 10.1016/j.commatsci.2015.05.002.
 
29.
Mucha W., 2019, Application of artificial neural networks in hybrid simulation, Applied Sciences, 9, DOI: 10.3390/app9214495.
 
30.
Mucha W., Kuś W., 2017, Application of mode superposition to hybrid simulation using real time finite element method, Mechanika, 23, 673-677.
 
31.
Mucha W., Kuś W., 2018, Mountain bicycle frame testing as an example of practical implementation of hybrid simulation using RTFEM, [In:] Computer Methods in Mechanics (CMM2017). Proceedings of the 22nd International Conference on Computer Methods in Mechanics, Lublin, Poland, 2017, AIP Conference Proceedings, 1922, AIP Publishing, Melville, 140002-1-140002-9.
 
32.
Ong J.H., 1987, Improved automatic masters for eigenvalue economization, Finite Elements in Analysis and Design, 3, 149-160, DOI: 10.1016/0168-874X(87)90006-0.
 
33.
Popplewell N., Bertels A.W.M., Arya B., 1973, A critical appraisal of the elimination technique, Journal of Sound and Vibration, 31, 213-233, DOI: 10.1016/S0022-460X(73)80376-1.
 
34.
Poteralski A., Szczepanik M., Beluch W., Burczyński T., 2014, Optimization of composite structures using bio-inspired methods, [In:] Artificial Intelligence and Soft Computing, L. Rutkowski, M. Korytkowski, R. Scherer, R. Tadeusiewicz, L.A. Zadeh, J.M. Zurada (Eds.), Springer International Publishing, 385-395.
 
35.
Qu Z.Q., 2013, Model Order Reduction Techniques with Applications in Finite Element Analysis, Springer London.
 
36.
Qu Z.-Q., Fu Z.-F., 2000, An iterative method for dynamic condensation of structural matrices, Mechanical Systems and Signal Processing, 14, 667-678, DOI: 10.1006/mssp.1998.1302.
 
37.
Ramos M.D.C., Mosqueda G., Hashemi M.J., 2016, Large-scale hybrid simulation of a steel moment frame building structure through collapse, Journal of Structural Engineering, 142, 04015086, DOI: 10.1061/(ASCE)ST.1943-541X.0001328.
 
38.
Ramsden J.N., Stoker J.R., 1969, Mass condensation? A semi-automatic method for reducing the size of vibration problems, International Journal for Numerical Methods in Engineering, 1, 333-349, DOI: 10.1002/nme.1620010403.
 
39.
Shah V.N., Raymund M., 1982, Analytical selection of masters for the reduced eigenvalue problem, International Journal for Numerical Methods in Engineering, 18, 89-98, DOI: 10.1002/nme.1620180108.
 
40.
Suarez L.E., Singh M.P., 1992, Dynamic condensation method for structural eigenvalue analysis, AIAA Journal, 30, 1046-1054.
 
41.
Zienkiewicz O.C., Taylor R.L., 2000, The Finite Element Method, Volume 1: The Basis, 5th ed. Butterworth-Heinemann, Oxford.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top