Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
2
National Demonstration Center for Experimental Mechanical and Electrical Engineering Education, Tianjin University of Technology, Tianjin, China
3
CNOOC Safety Technology Services Co., Ltd, Tianjin, China
Submission date: 2022-03-22
Final revision date: 2022-04-18
Acceptance date: 2022-04-26
Online publication date: 2022-06-08
Publication date: 2022-07-30
Corresponding author
Bingjie Zhao
Tianjin Key Laboratory for Advanced Mechatronic System Design and Intelligent Control, School of Mechanical Engineering, Tianjin University of Technology, Tianjin, China
Journal of Theoretical and Applied Mechanics 2022;60(3):333-346
Considering the key equipment of the pipeline clamp repair technology, this paper analyzes
design of the pipeline repair clamp. Based on the damaged pipeline repair requirements,
the design of a double-sealing pipeline repair clamp is established. The subsea pipeline in
the Bohai Bay is considered as an example to develop a finite element model of a double
sealing structure and calculate the sealing capacity, targeting a sealing pressure of 6MPa.
The parameters affecting the sealing capacity are studied. For circumferential sealing, the
effects of distance between the rubber and the pipeline, distance between the ring and the
pipeline, and the contact friction coefficient on the sealing capacity are analyzed. The design
parameters of circumferential sealing are optimized by an orthogonal experimental design
method. Further, the effect of the friction coefficient on the axial sealing capacity is studied,
and design suggestions are put forward based on the analysis. The results of this study can
provide guidance for the design and application of subsea pipeline repair clamps.
REFERENCES(21)
1.
Arif A.F.M., Al-Nassar Y.N., Al-Qahtani, H., Khan S.M.A., Anis M., Eleiche A.M., Inam M., Al-Nasri N.I., Al-Muslim H.M., 2012, Optimization of pipe repair sleeve design, Journal of Pressure Vessel Technology, 134, 5, 051702-1-10.
Armando R., Ray A., 2011, Deep water pipeline emergencies, managing risk and cost, the coownership solution, Proceedings of the 6th International Offshore Pipeline Forum, Houston, Texas, 6003, 1-4.
Cheng Y.F., Luo X.Y., Wang P.F., Yang Z.H., Huang J., Gu J.X., Zhao W.S., 2022, Multi-objective optimization of thermal-hydraulic performance in a microchannel heat sink with offset ribs using the fuzzy grey approach, Applied Thermal Engineering, 201, 1-17.
Crapps J.M., Yue X., Berlin R.A., Suarez H.A., Pribytkov P.A., Vyvial B.A., Proegler J.S., 2018, Strain-based pipeline repair via type B sleeve, International Journal of Offshore and Polar Engineering, 28, 3, 280-286.
Djukic L.P., Sum W.S., Leong K.H., Hillier W.D., Eccleshall T.W., Leong A.Y.L., 2015, Development of a fibre reinforced polymer composite clamp for metallic pipeline repairs, Materials and Design, 70, 68-80.
Dong L., Li Y.B., Huang M.H., Hu X., Qu Z.J., Lu Y., 2022, Effect of anodizing surface morphology on the adhesion performance of 6061 aluminum alloy, International Journal of Adhesion and Adhesives, 113, 1-9.
Han Z.Y., Ma D., Chen Q.Y., Wang Y.H., 2022, Orthogonal test design for optimization of synthesis of Bi2WO6 superstructure with high photocatalytic activity by hydrothermal method, Journal of Chemical Technology and Biotechnology, 97, 943-949.
Lan W.J., Wang H.X., Zhang X., Chen S.S., 2019, Sealing properties and structure optimization of packer rubber under high pressure and high temperature, Petroleum Science, 16, 3, 632-644.
Mazurkiewicz L., Malachowski J., Damaziak K., Tomaszewski M., 2018, Evaluation of the response of fibre reinforced composite repair of steel pipeline subjected to puncture from excavator tooth, Composite Structures, 202, 1126-1135.
Ramezani M.A., Yousefi S., Fouladi N., 2019, An experimental and numerical investigation of the effect of geometric parameters on the flexible joint nonlinear behavior for thrust vector control, Proceedings of the Institution of Mechanical Engineers, Part G: Journal of Aerospace Engineering, 233, 8, 2772-2782.
Sum W.S., Leong K.H., 2014, Numerical study of annular flaws/defects affecting the integrity of grouted composite sleeve repairs on pipelines, Journal of Reinforced Plastics and Composites, 33, 6, 556-565.
Sum W.S., Leong K.H., Djukic L.P., Nguyen T.K.T., Leong A.Y.L., Falzon P.J., 2016, Design, testing and field deployment of a composite clamp for pipeline repairs, Plastics, Rubber and Composites, 45, 2, 81-94.
Wen Z.H., Jiang S.D., Luo C.Y., Xia X.F., Liang Y.Y., Zhang L.Y., 2022, Assessment of ablation damage on quartz ceramics through experiment and 3D modelling considering a dynamic heat source, Ceramics International, 48, 3, 3515-3526.
Xu P., Qu C.J., Yao S.G., Yang C.X., Wang A., 2021, Numerical optimization for the impact performance of a rubber ring buffer of a train coupler, Machines, 9, 10, 1-20.
Zhao B.J., Zhu H.W., Zhang S.L., Zhang J.Y., Tang D.Y., 2015, Research of sealing property to subsea oil and gas pipeline repair clamp, Proceedings of the ASME 2015 Pressure Vessels and Piping Conference, 1-6.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.