ARTICLE
On mitigation of oscillations of a mechanical system with two degrees of freedom in the vicinity of external resonances
 
More details
Hide details
1
Universidad de Barcelona, Spain
 
2
Nizhyn Mykola Gogol State University, Ukraine
 
3
National Aerospace University KhAI, Ukraine
 
 
Submission date: 2022-12-13
 
 
Final revision date: 2023-03-05
 
 
Acceptance date: 2023-05-31
 
 
Online publication date: 2023-07-12
 
 
Publication date: 2023-07-31
 
 
Corresponding author
Nina Savchenko   

Higher Mathematics and System Analysis, National Aerospace University KhAI, Chkalova, 17, 61070, Kharkiv, Ukraine
 
 
Journal of Theoretical and Applied Mechanics 2023;61(3):613-624
 
KEYWORDS
TOPICS
ABSTRACT
In this article, we study dynamical behaviour of a 2-DoF mechanical system subjected to an external harmonic force. This system which consists of the Duffing oscillator considered as a bulk system and a linear dynamic vibration absorber (LDVA) attached to it. An analytical approach for optimal choice of the parameters of the LDVA is suggested with the aim to avoid the “superfluous” increase in the amplitude of forced oscillations of the main system. The analysis performed shows that when using a linear absorber, its proper tuning (choice of stiffness and damping coefficients) gives satisfactory results – the peak values of the frequency-amplitude curve (FAC) are decreasing comparatively with the case of the linear main oscillator.
REFERENCES (30)
1.
Awrejcewicz J., Cheaib A., Losyeva N., Puzyrov V., 2020, Responses of a two degrees-of-freedom system with uncertain parametrs in the vicinity of resonance 1:1, Nonlinear Dynamics, 101, 1, 85-106.
 
2.
Balaji P.S., Karthik K., Kumar S., 2021, Applications of nonlinearity in passive vibration control: A review, Journal of Vibration Engineering and Technologies, 9, 183-213.
 
3.
Brock J.E., 1946, A note on the damped vibration absorber, Journal of Applied Mechanics, 13, 4, A284.
 
4.
Bronkhorst K.B., Febbo M., Lopes E.M.O., Bavastri C.A., 2018, Experimental implementation of an optimum viscoelastic vibration absorber for cubic nonlinear systems, Engineering Structures, 163, 323-331.
 
5.
Cirillo G.I., Habib G., Kerschen G., Sepulchre R., 2017, Analysis and design of nonlinear resonances via singularity theory, Journal of Sound and Vibration, 392, 295-306.
 
6.
Den Hartog J.P., 1934, Mechanical Vibrations, McGraw-Hill, New York.
 
7.
Febbo M., Machado S.P., 2013, Nonlinear dynamic vibration absorbers with a saturation, Journal of Sound and Vibration, 332, 1465-1483.
 
8.
Frahm H., 1911, Device for damping vibrations of bodies, US Patent 989958.
 
9.
Gatti G., Brennan M.J., Kovacic I., 2010, On the interaction of the responses at the resonance frequencies of a nonlinear two degrees-of-freedom system, Physica D, 239, 591-599.
 
10.
Gendelman O.V., Starosvetsky Y., 2007, Quasi-periodic response regimes of linear oscillator coupled to nonlinear energy sink under periodic forcing, Journal of Applied Mechanics, 74, 325-331.
 
11.
Habib G., Detroux T., Viguié R., Kerschen G., 2015, Nonlinear generalization of Den Hartogs equal-peak method, Mechanical Systems and Signal Processing, 52, 17-28.
 
12.
Habib G., Kerschen G., 2016, A principle of similarity for nonlinear vibration absorbers, Physica D, 332, 1-8.
 
13.
Islam N.U., Jangid R. S., 2022, Optimum parameters of tuned inerter damper for damped structures, Journal of Sound and Vibration, 537, 117218.
 
14.
Jangid R.S., 2021, Optimum tuned inerter damper for base-isolated structures, Journal of Vibration Engineering and Technologies, 9, 1483-1497.
 
15.
Ji J.C., Zhang N., 2010, Suppression of the primary resonance vibrations of a forced nonlinear system using a dynamic vibration absorber, Journal of Sound and Vibration, 329, 2044-2056.
 
16.
Jo H., Yabuno H., 2009, Amplitude reduction of primary resonance of nonlinear oscillator by a dynamic vibration absorber using nonlinear coupling, Nonlinear Dynamics, 55, 67-78.
 
17.
Kremer D., Liu K., 2017, A nonlinear energy sink with an energy harvester: Harmonically forced responses, Journal of Sound and Vibration, 410, 287-302.
 
18.
Li L.Y., Zhang T., 2020, Analytical analysis for the design of nonlinear tuned mass damper, Journal of Vibration and Control, 26, 9-10, 646-658.
 
19.
Liu J., Yao J., Huang K., Zhang Q., Ze L., 2022, Analysis of a nonlinear tuned mass damper by using the multi-scale method, Journal of Theoretical and Applied Mechanics, 60, 3, 463-477.
 
20.
Lu Z., Wang Z.X., Zhou Y., Lu X.L., 2018, Nonlinear dissipative devices in structural vibration control: A review, Journal of Sound and Vibration, 423, 18-49.
 
21.
Luongo A., Zulli D., 2012, Dynamic analysis of externally excited NES-controlled systems via a mixed multiple scale/harmonic balance algorithm, Nonlinear Dynamics, 70, 3, 2049-2061.
 
22.
Ocak A., Nigdeli S.M., Bekdaş G., 2022, Passive control via mass dampers: a review of state-of-the-art developments, [In:] Optimization of Tuned Mass Dampers – Using Active and Passive Control, G. Bekdaş, S.M. Nigdeli (Edit,), 432, Springer, 15-40.
 
23.
Ormondroyd J., Den Hartog, J.P., 1928, Theory of the dynamic vibration absorber, Transactions of the American society of Mechanical Engineers, 50, 9-22.
 
24.
Peng Z.K., Meng G., Lang Z.Q., Zhang W.M., Chu F.L., 2012, Study of the effects of cubic nonlinear damping on vibration isolations using harmonic balance method, International Journal of Non-Llinear Mechanics, 47, 1073-1080.
 
25.
Prakash Sh., Jangid R.S., 2022, Optimum parameters of tuned mass damper-inerter for damped structure under seismic excitation, International Journal of Dynamics and Control, 10, 1322-1336.
 
26.
Vakakis A.F., Gendelman O., Bergman L.A., McFarland D.M., Kerschen G., Lee Y.S., 2009, Nonlinear Targeted Energy Transfer in Mechanical and Structural System, Springer, Berlin.
 
27.
Yang J., Xiong Y.P., Xing J.T., 2014, Power flow behaviour and dynamic performance of a nonlinear vibration absorber coupled to a nonlinear oscillator, Nonlinear Dynamics, 80, 3, 1063-1079.
 
28.
Yu B., Luo A.C.J., 2019, Steady state performance of a nonlinear vibration absorber on vibration reduction of a harmonically forced oscillator, European Physical Journal Special Topics, 228, 1823-1837.
 
29.
Zhou S., Jean-Mistral C., Chesne S., 2019, Closed-form solutions to optimal parameters of dynamic vibration absorbers with negative stiffness under harmonic and transient excitation, International Journal of Mechanical Sciences, 157-158, 528-541.
 
30.
Zhu S.J., Zheng Y.F., Fu Y.M., 2004, Analysis of non-linear dynamics of a two-degree-of-freedom vibration system with non-linear damping and non-linear spring, Journal of Sound and Vibration, 271, 15-24.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top