A new augmented Biderman model inspired by the modified couple stress theory has been
introduced to investigate the size effect in addition to nonlinear material effects. Then, this
model is used to investigate free vibration of a hyper-elastic microbeam. Classical Biderman
strain energy does not include the effect of small size in hyper-elastic materials. In order
to consider the effect of small size, terms inspired by the modified couple stress theory are
added to the classical Biderman strain energy function. In order to provide the possibility
of calculating these terms, a relation between the material constants in the hyper-elastic
Biderman model and the linear elastic constants is obtained. The equations of motion of
the microbeam is obtained based on the extended Hamilton principle, and then is solved
using Galerkin discretization and perturbation methods. The effect of thickness to length
scale ratio on the normalized frequency is studied for different modes. It is shown that
when thickness gets larger in comparison with the length scale parameter, the normalized
frequency tends to classical Biderman results. The results obtained are validated by results
of the Runge-Kutta numerical method and indicate an excellent agreement. Mode shapes
of the microbeam based on the classical and the augmented models are depicted, where the
augmented model anticipates stiffer behavior for hyperelastic microbeams.
REFERENCES(25)
1.
Abbasi M., Mohammadi A.K., 2014, Study of the sensitivity and resonant frequency of the flexural modes of an atomic force microscopy microcantilever modeled by strain gradient elasticity theory, Proceedings of the Institution of Mechanical Engineers, Part C: Journal of Mechanical Engineering Science, 228, 1299-1310.
Akgöz B., Civalek Ö., 2013, A size-dependent shear deformation beam model based on the strain gradient elasticity theory, International Journal of Engineering Science, 70, 1-14.
Carpi F., De Rossi D., Kornbluh R., Pelrine R.E., Sommer-Larsen P., 2011, Dielectric Elastomers as Electromechanical Transducers: Fundamentals, Materials, Devices, Models and Applications of an Emerging Electroactive Polymer Technology, Elsevier.
Danaee Barforooshi S., Karami Mohammadi A., 2016, Study neo-Hookean and Yeoh hyper-elastic models in dielectric elastomer-based micro-beam resonators, Latin American Journal of Solids and Structures, 13, 1823-1837.
Dubois P., Rosset S., Niklaus M., Dadras M., Shea H., 2008, Voltage control of the resonance frequency of dielectric electroactive polymer (DEAP) membranes, Journal of Microelectromechanical Systems, 17, 1072-1081.
Feng C., Jiang L., Lau W.M., 2011, Dynamic characteristics of a dielectric elastomer-based microbeam resonator with small vibration amplitude, Journal of Micromechanics and Microengineering, 21, 16-23.
Feng C., Yu L., Zhang W., 2014, Dynamic analysis of a dielectric elastomer-based microbeam resonator with large vibration amplitude, International Journal of Nonlinear Mechanics, 65, 63-68.
Kahrobaiyan M.H., Asghari M., Ahmadian M.T., 2014, A Timoshenko beam model based on the modified couple stress theory, International Journal of Mechanical Sciences, 79, 75-83.
Karami Mohammadi A., Danaee Barforooshi S., 2017, Nonlinear forced vibration analysis of dielectric elastomer based microbeam with considering Yeoh hyper-elastic model, Latin American Journal of Solids and Structures, 14, 643-656.
Ke L.L., Wang Y.S., Yang J., Kitipornchai S., 2012, Free vibration of size-dependent Mindlin microplates based on the modified couple stress theory, Journal of Sound and Vibration, 331, 94-106.
Martins P.A.L., Natal Jorge R.M.A., Ferreira J.M.A., 2006, A comparative study of several material models for prediction of hyperelastic properties: application to silicone-rubber and soft tissues, Strain, 42, 135-147.
Ogden R.W., Roxburgh D.G., 1993, The effect of pre-stress on the vibration and stability of elastic plates, International Journal of Engineering Science, 31, 1611-1639.
Soares R.M., Gonçalves P.B., 2012, Nonlinear vibrations and instabilities of a stretched hyperelastic annular membrane, International Journal of Solids Structures, 49, 514-526.
Wang Y.G., Lin W.H., Liu N., 2015, Nonlinear bending and post-buckling of extensible microscale beams based on modified couple stress theory, Applied Mathematical Modeling, 39, 117-127.
Yang F., Chong A., Lam D., Tong P., 2002, Couple stress based strain gradient theory for elasticity, International Journal of Solids and Structures, 39, 2731-2743.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.