ARTICLE
Experimental investigation of the long-term mechanical behavior of mudstone under varying water contents
 
 
More details
Hide details
1
China Anneng Group Third Engineering Bureau Co.Ltd., Chengdu, China
 
 
Submission date: 2025-03-20
 
 
Final revision date: 2025-05-21
 
 
Acceptance date: 2025-06-24
 
 
Online publication date: 2025-11-08
 
 
Corresponding author
Zhuangen Qin   

China Anergy Group Third Engineering Bureau Co.Ltd., China Anergy Group Third Engineering Bureau Co.Ltd., China
 
 
 
KEYWORDS
TOPICS
ABSTRACT
This study presents a series of uniaxial compression and creep tests designed to elucidate the long-term mechanical properties of mudstone subjected to different water content conditions. The results demonstrate that water content exerts a significant influence on the short-term strength, elastic modulus, and creep response of mudstone. Specifically, the uniaxial compressive strength and elastic modulus exhibit an exponential decrease with increasing water content. Furthermore, the creep behavior of mudstone is markedly affected by water content. A creep damage model, integrating the Burgers model with water-induced and creep-induced damage variables, is proposed.
REFERENCES (31)
1.
Bieniawski, Z.T., & Bernede, M.J. (1979). Suggested methods for determining the uniaxial compressive strength and deformability of rock materials. International Journal of Rock Mechanics and Mining Sciences & Geomechanics Abstracts, 16 (2), 135–140.
 
2.
Brown, E.T. (2004). Rock characterization, testing and monitoring: ISRM suggested methods. ISRM.
 
3.
Chen, F., Sun, X., & Lu, H. (2022). Influence of water content on the mechanical characteristics of mudstone with high smectite content. Geofluids, 2022 (1), Article 9855213. https://doi.org/10.1155/2022/9....
 
4.
Gao, Y., Wei, W., & Jiang, Q. (2023). Effect of water content on mechanical properties and internal microcrack evolution in mudstone. Arabian Journal for Science and Engineering, 48 (10), 12775–12791. https://doi.org/10.1007/s13369....
 
5.
Goodman, R.E. (2008). Introduction to rock mechanics (2nd ed.). John Wiley & Sons.
 
6.
Hoek, E., & Brown, E.T. (1997). Practical estimates of rock mass strength. International Journal of Rock Mechanics and Mining Sciences, 34 (8), 1165–1186. https://doi.org/10.1016/S1365-....
 
7.
Hudson, J.A., & Harrison, J.P. (1997). Engineering rock mechanics: an introduction to the principles. Elsevier.
 
8.
Jaeger, J.C., Cook, N.G.W., & Zimmerman, R.W. (2007). Fundamentals of rock mechanics (4th ed.). Blackwell Publishing.
 
9.
Kachanov, L.M. (1958). Time of the rupture process under creep conditions. Izvestiia Akademii Nauk SSSR, Otdelenie Teckhnicheskikh Nauk, 8, 26–31.
 
10.
Krajcinovic, D. (1996). Damage mechanics. Elsevier.
 
11.
Lemaitre, J. (1996). A course on damage mechanics. Springer. https://doi.org/10.1007/978-3-...
 
12.
Lemaitre, J., & Chaboche, J.L. (1990). Mechanics of solid materials. Cambridge University Press. https://docs.dicatechpoliba.it...
 
13.
Li, J., Gao, Y., Yang, T., Zhang, P., Deng, W., & Liu, F. (2023). Effect of water on the rock strength and creep behavior of green mudstone. Geomechanics and Geophysics for Geo-Energy and Geo-Resources, 9 (1), Article 101. https://doi.org/10.1007/s40948....
 
14.
Liu, C.-D., Cheng, Y., Jiao, Y.-Y., Zhang, G.-H., Zhang, W.-S., Ou, G.-Z., & Tan, F. (2021). Experimental study on the effect of water on mechanical properties of swelling mudstone. Engineering Geology, 295, Article 106448. https://doi.org/10.1016/j.engg....
 
15.
Liu, J., Zhang, Q., Wang, L., Chen, F., Wang, P., Yan, X., & Guo, L. (2024). A time-dependent expansion model for mudstone submerged in water. Soil Mechanics and Foundation Engineering, 61 (1), 20–26. https://doi.org/10.1007/s11204....
 
16.
Ma, C., Zhan, H.-B., Yao, W.-M., & Li, H.-Z. (2018). A new shear rheological model for a soft interlayer with varying water content. Water Science and Engineering, 11 (2), 131–138. https://doi.org/10.1016/j.wse.....
 
17.
Murakami, S. (1988). Mechanical modeling of material damage. Journal of Applied Mechanics (ASME Transactions), 55 (2), 280-286. https://doi.org/10.1115/1.3173...
 
18.
Ping, S., Wang, F., Wang, D., Li, S., Wang, Y., Yuan, Y., & Feng, G. (2024). Mechanical damage induced by the water–rock reactions of gypsum-bearing mudstone. Rock Mechanics and Rock Engineering, 57 (8), 6377–6394. https://doi.org/10.1007/s00603....
 
19.
Qi, S., Zhang, H., Bian, H., Wang, J., Xu, S., & Wu, B. (2024). Damage characteristics and degradation mechanism of silty mudstone under wet–dry cycling. Geotechnical and Geological Engineering, 42 (7), 6095–6112. https://doi.org/10.1007/s10706....
 
20.
Rabotnov, Yu.N. (1969). Creep problems in structural members. North-Holland Publishing Company.
 
21.
Sawatsubashi, M., Kiyota, T., & Katagiri, T. (2021). Effect of initial water content and shear stress on immersion-induced creep deformation and strength characteristics of gravelly mudstone. Soils and Foundations, 61 (5), 1223–1234. https://doi.org/10.1016/j.sand....
 
22.
Schimmell, M.T.W., Hangx, S.J.T., & Spiers, C.J. (2022). Effect of pore fluid chemistry on uniaxial compaction creep of Bentheim sandstone and implications for reservoir injection operations. Geomechanics for Energy and the Environment, 29, Article 100272. https://doi.org/10.1016/j.gete....
 
23.
Shao, Z., Song, Y., Zheng, J., Shen, F., Liu, C., & Yang, J. (2024). Damage degradation mechanism and macro-meso structural response of mudstone after water wetting. Journal of Mountain Science, 21 (8), 2825–2843. https://doi.org/10.1007/s11629....
 
24.
Wang, J.-G., Sun, Q.-L., Liang, B., Yang, P.-J., & Yu, Q.-R. (2020). Mudstone creep experiment and nonlinear damage model study under cyclic disturbance load. Scientific Reports, 10, Article 9305. https://doi.org/10.1038/s41598....
 
25.
Wang, Y., Cong, L., Yin, X., Yang, X., Zhang, B., & Xiong, W. (2021). Creep behaviour of saturated purple mudstone under triaxial compression. Engineering Geology, 288, Article 106159. https://doi.org/10.1016/j.engg....
 
26.
Yang, S.-Q., Tian, W.-L., Jing, H.-W., Huang, Y.-H., Yang, X.-X., & Meng, B. (2019). Deformation and damage failure behavior of mudstone specimens under single-stage and multi-stage triaxial compression. Rock Mechanics and Rock Engineering, 52 (3), 673–689. https://doi.org/10.1007/s00603....
 
27.
Yang, Y.-L., Zhang, T., Liu, S.-Y., & Luo, J.-H. (2022). Mechanical properties and deterioration mechanism of remolded carbonaceous mudstone exposed to wetting–drying cycles. Rock Mechanics and Rock Engineering, 55 (6), 3769–3780. https://doi.org/10.1007/s00603....
 
28.
Yang, Y.J., Huang, G., Zhang, Y.Q., & Yuan, L. (2023). An improved Burgers creep model of coal based on fractional-order. Frontiers in Earth Science, 11, Article 1277147. https://doi.org/10.3389/feart.....
 
29.
Yu, X.-W., Fu, H.-Y., Zeng, L., Liu, J., & Qiu, X.-Y. (2024). Damage constitutive model for soft rocks and its experimental verification on silty mudstone considering cyclic rock-water interactions. Bulletin of Engineering Geology and the Environment, 83 (6), Article 254. https://doi.org/10.1007/s10064....
 
30.
Zheng, J., Song, Y., Shen, F., Shao, Z., Liu, C., & Yang, J. (2024). Study on mechanical properties of water-immersed mudstone based on nanoindentation tests. Mining, Metallurgy & Exploration, 41 (4), 2031–2046. https://doi.org/10.1007/s42461....
 
31.
Zou, J., Li, G., Li, Z., Zhang, Y., Liu, H., & Wang, Y. (2024). Experimental study on the mechanical characteristics of weakly cemented mudstone under different loading rates. Scientific Reports, 14, Article 15364. https://doi.org/10.1038/s41598....
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top