ARTICLE
Crack growth path simulation in a cement mantle of THR using crack box technique
 
More details
Hide details
1
Djillali Liabes University of Sidi Bel-Abbes, Mechanical Engineering Department, Laboratory of Materials and Reactive Systems, City Larbi Ben Mhidi, Algeria
 
2
Djillali Liabes University of Sidi Bel-Abbes, City Larbi Ben Mhidi, Algeria
 
 
Submission date: 2018-01-19
 
 
Acceptance date: 2018-09-27
 
 
Publication date: 2019-04-15
 
 
Journal of Theoretical and Applied Mechanics 2019;57(2):317-329
 
KEYWORDS
ABSTRACT
A numerical method for 2D LEFM crack propagation simulation in a cement mantle of the total hip replacement (THR) is presented. This work is based on the implementation of the displacement correlation technique (DCT) and the maximum circumferential stress (MCS) theory in a finite element code, using the Ansys Parametric Design Language (APDL). At each crack increment length, the crack direction angle is evaluated as a function of stress intensity factors (SIFs). The crack box technique is investigated for crack propagation simulation. The advantage of this technique is facilitation of the automatic remeshing of the structure during crack extension. In this paper, we analyzed the mechanical behavior of cracks initiated in the cement mantle by evaluating the SIFs. The effect of the cavities and the initial crack directions on the crack growth path has been highlighted.
REFERENCES (41)
1.
Achour T., 2006, Etude du comportement mécanique et en rupture d’une prothse totale de hanche cimentée, Thèse de Doctorat, Université de Sidi Bel Abbes, Algérie.
 
2.
Achour T., Benbarek S., Belhouari M., Bachir Bouiadjra B., 2007, Analyse par la méthode des éléments finis du comportement en rupture du ciment de la cupule d’une P.T.H., 8ème Congrès de Mécanique du 17-20 Avril, El Jadida, Maroc.
 
3.
Achour T., Tabeti M.S.H., Bouziane M.M., Benbarek S., Bachir Bouiadjra B., Mankour A., 2010, Finite element analysis of interfacial crack behavior in cemented total hip arthroplasty, Computational Materials Science, 47, 672-677.
 
4.
ANSYS, Inc. Programmer’s Manual for Mechnical APDL, Release 12.1, 2009.
 
5.
Bachir Bouiadjra B., Belarbi A., Benbarek S., Achour T., Serier B., 2007, FE analysis of the behaviour of microcracks in the cement mantle of reconstructed acetabulum in the total hip prosthesis, Computational Materials Science, 40, 485-491.
 
6.
Barsoum R.S., 1974, On the use of isoparametric finite element in linear fracture mechanics, International Journal for Numerical Methods in Engineering, 10, 25-37.
 
7.
Belhouari M., Achour T., Bachir Bouiadjra B., Serier B., 2007, Analyse par la méthode des éléments finis du comportement en rupture du ciment de l’implant fémoral, 18ème Congrès Français de Mécanique, Grenoble, France.
 
8.
Benamara N., Boulenouar A., Aminallah M., 2017a, Strain energy density prediction of mixed-mode crack propagation in functionally graded materials, Periodica Polytechnica Mechanical Engineering, 61, 1, 60-67.
 
9.
Benamara N., Boulenouar A., Aminallah M., Benseddiq N., 2017b, On the mixed-mode crack propagation in FGMs plates: comparison of different criteria, Structural Engineering and Mechanics, 615, 371-379.
 
10.
Benbarek S., Bachir Bouiadjra B., Bouziane M.M., Achour T., Serier B., 2013, Numerical analysis of the crack growth path in the cement mantle of the reconstructed acetabulum, Materials Science and Engineering C, 33, 543-549.
 
11.
Benbarek S., Bachir Bouiadjra B., Mankour A., Achour T., Serier B., 2009, Analysis of fracture behaviour of the cement mantle of reconstructed acetabulum, Computational Materials Science, 44, 1291-1295.
 
12.
Benouis A., Boulenouar A., Benseddiq N., Serier B., 2015, Numerical analysis of crack pro- pagation in cement PMMA: application of SED approach, Structural Engineering and Mechanics, 55, 1, 93-109.
 
13.
Benouis A., Boulenouar A., Serier B., 2016, Finite element analysis of the behaviour of a crack in the orthopedic cement, Journal of Theoretical and Applied Mechanics, 54, 277-284.
 
14.
Benouis A., Zagane M.E., Boulenouar A., Serier B., Belgherras M.E., 2018, 3D FE analysis of the elliptical cracks behaviour in orthopedic cement of the total hip prostheses, Journal of Theoretical and Applied Mechanics, 56, 3, 803-813, DOI: 10.15632/jtam-pl.56.3.803.
 
15.
Bhambri, S.K., Gilbertson L.N., 1996, Micro mechanisms of fatigue crack initiation and propagation in bone cements, Journal of Biomedical Materials Research, 29, 233-237.
 
16.
Boulenouar A., Benouis A., Benseddiq N., 2016, Numerical modelling of crack propagation in cement PMMA: Comparison of different criteria, Materials Research, 19, 4, 846-855.
 
17.
Boulenouar A., Benouis A., Merzoug M., 2015, Application of strain energy density approach in biomechanics fracture problems, Actes de la 2`eme Conf´erence Internationale de M´ecanique (ICM’15), Constantine, Alg´erie.
 
18.
Boulenouar A., Benseddiq N., Mazari M., 2013a, Strain energy density prediction of crack propagation for 2D linear elastic materials, Theoretical and Applied Fracture Mechanics, 67-68, 29-37.
 
19.
Boulenouar A., Benseddiq N., Mazari M., 2013b, Two-dimensional numerical estimation of stress intensity factors and crack propagation in linear elastic analysis, Engineering, Technology and Applied Science Research, 3, 506-510.
 
20.
Boulenouar A., Benseddiq N., Mazari M., Benamara N., 2014, FE model for linear elastic mixed mode loading: estimation of SIFs and crack propagation, Journal of Theoretical and Applied Mechanics, 52, 373-383.
 
21.
Bouziane M.M., Bachir Bouiadjra B., Benseddiq N., Tabeti E.M.H., Serier B., Benba- rek S., 2013, The Effects of Cracks Emanating from Micro-Void and Bone Inclusion in Cemented Total Hip Replacement, Advances in Bio-Mechanical Systems and Materials, Advanced Structured Materials, Books, Springer.
 
22.
Erdogan F., Sih G.C., 1963, On the crack extension in plates under plane loading and transverse shear, Journal of Basic Engineering, 85, 519-527.
 
23.
Flitti A., Ouinas D., Bachir Bouiadjra B., Benderdouche N., 2010, Effect of the crack position in the cement mantle on the fracture behaviour of the total hip prosthesis, Computational Materials Science, 49, 598-602.
 
24.
Griffith A.A., 1921, The phenomena of rupture and flow in solids, Philosophical Transactions of the Royal Society of London, Series A, 163-198.
 
25.
Hunga J.P., Chenb J.H., Chianga H.L., Shih J.S., 2004, Computer simulation on fatigue behavior of cemented hip prostheses: a physiological model, Computer Methods and Programs in Biomedicine, 76, 103-113.
 
26.
Kim B., Moon B., Mann K., Kim H., Boo K.-S., 2008, Simulated crack propagation in cemented total hip replacements, Materials Science and Engineering A, 483-484, 306-308.
 
27.
Kong X.M., Schluter N., Dahl W., 1995, Effect of triaxial stress on mixed mode-facture,Engineering Fracture Mechanics, 52, 2, 379-388.
 
28.
Leroy R., 1991, Etude et comportement non-uniforme de l’interface entre implant f´emorale et liant polym´erique dans le cas de proth`ese totale de hanche, Th`ese de doctorat, Universit´e de Tours, France.
 
29.
Lim I.L., Johnston I.W., Choi S.K., 1992, Comparison between various displacement-based stress intensity factor computation techniques, International Journal of Fracture, 58, 193-210.
 
30.
McCormack B.A.O., Prendergast P.J., 1999, Micro damage accumulation in the cement layer of hip replacements under flexural loading, Journal of Biomechanics, 32, 467-475.
 
31.
Oshkour A.A., Davoodi M.M., Abu Osman N.A., Yau Y.H., Tarlochan F., Wan Abas WA.B., 2013, Finite element analysis of circumferential crack behavior in cement-femoral prosthesis interface, Materials and Design, 49, 96-102.
 
32.
Ouinas D., Flitti A., Sahnoun M., Benbarek S., Taghezout N., 2012, Fracture behavior of the cement mantle of reconstructed acetabulum in the presence of a microcrack emanating from a microvoid, International Journal of Materials Engineering, 2, 90-104.
 
33.
Rice J.R., 1986, A path independent integral and the approximate analysis of strain concentrations by notches and cracks, Journal of Applied Mechanics, 35, 379-386.
 
34.
Rybicki E.F, Kanninen M.F., 1977, Finite element calculation of stress intensity factors by a modified crack closure integral, Engineering Fracture Mechanics, 9, 931-938.
 
35.
Sahli A., Benbareka S., Wayneb S., Bachir Bouiadjra B., Serier B., 2014, 3D crack behavior in the orthopedic cement mantle of a total hip replacement, Applied Bionics and Biomechanics, 11, 135-147.
 
36.
Shih C., De Lorenzi H., German M., 1976, Crack extension modeling with singular quadratic isoparametric elements, International Journal of Fracture, 12, 647-651.
 
37.
Sih G.C., 1973, Some basic problems in fracture mechanics and new concepts, Engineering Fracture Mechanics, 5, 365-377.
 
38.
Sih G.C., 1974, Strain energy density factor applied to mixed mode crack problems, International Journal of Fracture, 10, 3, 305-321.
 
39.
Taylor D., Hazenberg J.G., Lee T.C., 2003, The cellular transducer in damage-stimulated bone remodelling: a theoretical investigation using fracture mechanics, Journal of Theoretical Biology, 225, 65-75.
 
40.
Theocaris P.S., Andrianopoulos N.P., 1982a, The Mises elastic-plastic boundary as the core region in fracture criteria, Engineering Fracture Mechanics, 16, 425-432.
 
41.
Theocaris P.S., Andrianopoulos N.P., 1982b, The T-criterion applied to ductile fracture,International Journal of Fracture, 20, 125-130.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top