ARTICLE
Analysis of ultrashort laser pulse irradiation with 2d thin metal films using the fuzzy lattice Boltzmann method

More details
Hide details
 1 Silesian University of Technology, Institute of Computational Mechanics and Engineering, Gliwice, Poland
Online publication date: 2020-01-15
Publication date: 2020-01-15
Submission date: 2019-02-27
Acceptance date: 2019-09-13

Journal of Theoretical and Applied Mechanics 2020;58(1):209–219
Article (PDF)
References (28)

KEYWORDS
ABSTRACT
This paper presents the numerical modelling of heat transfer in two-dimensional metal films. The mathematical model of the problem analyzed consists on fuzzy coupled lattice Boltzmann equations for electrons and phonons supplemented by adequate boundary-initial conditions. In this model, the standard two-dimensional 9-speed lattice (D2Q9) is used. The main concept behind this work was to use the fuzzy lattice Boltzmann method (FLBM) to analyze the thermal process proceeding in a thin metal film. The application of α-cuts allows one to simplify mathematical operations in the fuzzy numbers set. Additionally, the trapezoidal approximation of fuzzy relaxation times and boundary conditions is considered. In the final part of the paper, the results of numerical computations are shown.

REFERENCES (28)
1.
Bejan A., Kraus D., 2003, Heat Transfer Handbook, John Wiley & Sons, New Jersey.

2.
Cattaneo C., 1958 A form of heat conduction equation which eliminates the paradox of instantaneous propagation, Comptes rendus de l’Acad´emie des Sciences, 247, 431-433.

3.
Chen G., Borca-Tasciuc D., Yang R.G., 2004, Nanoscale heat transfer, [In:] Encyclopedia of Nanoscience and Nanotechnology, American Scientific Publishers, 7, 359-429.

4.
Chen J.K., Tzou D.Y., Beraun J.E., 2006, A semiclassical two-temperature model for ultrafast laser heating, International Journal of Heat and Mass Transfer, 49, 307-316.

5.
Dziatkiewicz J., Kuś W., Majchrzak E., Burczyński T., Turchan Ł., 2014, Bioinspired identification of parameters in microscale heat transfer, International Journal for Multiscale, Computational Engineering, 12, 1, 79-89.

6.
Escobar R.A., Ghai S.S., Jhon M.S., Amon C.H., 2006, Multi-length and time scale thermal transport using the lattice Boltzmann method with application to electronics cooling, International Journal of Heat and Mass Transfer, 49, 97-107.

7.
Ghai S.S., Kim W.T., Escobar R.A., Amon C.H., Jhona M.S., 2005, A novel heat transfer model and its application to information storage systems, Journal Applied Physics, 97, https://doi.org/10.1063/1.1853....

8.
Giachetti R.E., Young R.E., 1997, A parametric representation of fuzzy numbers and their arithmetic operators, Fuzzy Sets and Systems, 91, 185-202.

9.
Guerra M.L., Stefanini L., 2005, Approximate fuzzy arithmetic operations using monotonic interpolations, Fuzzy Sets and Systems, 150, 5-33.

10.
Hanss M., 2005, Applied Fuzzy Arithmetic, Springer-Verlag, Berlin-Heidelberg.

11.
Ho J.R., Kuo Ch.P., Jiaung W.S., 2003, Study of heat transfer in multilayered structure within the framework of dual-phase-lag heat conduction model using lattice Boltzmann method, International Journal of Heat and Mass Transfer, 46, 55-69

12.
Lee J.B., Kang K., Lee S.H., 2011, Comparison of theoretical models of electron-phonon coupling in thin gold films irradiated by femtosecond pulse lasers, Materials Transactions, 52, 3, 547-553.

13.
Majchrzak E., Dziatkiewicz J., 2015, Analysis of ultashort laser pulse interactions with metal films using a two-temperature model, Journal of Applied Mathematics and Computational Mechanics, 14, 2, 31-39.

14.
Majchrzak E., Kałuża G., 2015, Heat flux formulation for 1D dual-phase lag equation, Journal of Applied Mathematics and Computational Mechanics, 14, 1, 71-78.

15.
Majchrzak E., Mochnacki B., 2014, Sensitivity analysis of transient temperature field in microdomains with respect to the dual phase lag model parameters, International Journal for Multiscale Computational Engineering, 12, 1, 65-77.

16.
Majchrzak E., Mochnacki B., Greer A.L., Suchy J.S., 2009, Numerical modeling of short pulse laser interactions with multi-layered thin metal films, CMES: Computer Modeling in Engineering and Sciences, 41, 2, 131-146.

17.
McDonough J.M., Kunadian I., Kumar R.R., Yang T., 2006, An alternative discretization and solution procedure for the dual phase-lag equation, Journal of Computational Physics, 219, 163-171.

18.
Mochnacki B., Paruch M., 2013, Estimation of relaxation and thermalization times in microscale heat transfer model, Journal of Theoretical and Applied Mechanics, 51, 4, 837-845.

19.
Mochnacki B., Piasecka-Belkhayat A., 2013, Numerical modeling of skin tissue heating using the interval finite difference method, MCB: Molecular and Cellular Biomechanics, 10, 3, 233-244.

20.
Otto K., Lewis A.D., Antonsson E., 1993, Approximation alpha-cuts with the vertex method, Fuzzy Sets and Systems, 55, 43-50.

21.
Piasecka-Belkhayat A., 2011, Interval boundary element method for imprecisely defined unsteady heat transfer problems, D.Sc. Dissertation, Gliwice.

22.
Piasecka-Belkhayat A., Korczak A., 2014a, Application of the interval lattice Boltzmann method for a numerical modeling of thin metal films irradiation by ultra short laser pulses, IAPGOŚ, 4, 85-88.

23.
Piasecka-Belkhayat A., Korczak A., 2014b, Modelling of transient heat transport in one-dimensional crystalline solids using the interval lattice Boltzmann method, Recent Advances in Computational Mechanics, T. Łodygowski, J. Rakowski and P. Litewka (Edit.), Taylor & Francis Group, A.A. Balkema Book, London, 363-368.

24.
Piasecka-Belkhayat A., Korczak A., 2016, Numerical modelling of the transient heat transport in a thin gold film using the fuzzy lattice Boltzmann method with α-cuts, Journal of Applied Mathematics and Computational Mechanics, 15, 1, 123-135.

25.
Piasecka-Belkhayat A., Korczak A., 2017, Modeling of thermal processes proceeding in a 1D domain of crystalline solids using the lattice Boltzmann method with an interval source function, Journal of Theoretical and Applied Mechanics, 55, 1, 167-175.

26.
Tzou D.Y., 1997, Macro- to Microscale Heat Transfer: The Lagging Behavior, Taylor and Francis, Washington.

27.
Venkatakrishnan K., Tan B., Ngoi B.K.A., 2002, Femtosecond pulsed laser ablation of thin gold film, Optics and Laser Technology, 34, 199-202.

28.
Zhang Z.M., 2007, Nano/microscale Heat Transfer, McGraw-Hill, New York.

 eISSN: 2543-6309 ISSN: 1429-2955 