In this paper, an exact closed form solution is introduced for the heat conduction equation in
cylindrical coordinates under consecutive inner time dependent surface heat flux by both the
Fourier and dual-phase-lag (DPL) models. The solution is used to calculate the temperature
distribution in a gun barrel subjected to single and consecutive shoots, and the results are
compared with literature. The parametrical study is done using the analytical solution to
show the effect of shooting frequency which leads to different heat power from each fire
shoot and temperature distribution. The result shows good ability of analytical solution
for estimation of temperature distribution in the gun barrel, especially under consecutive
shoots in which unexpected incidents such as barrel melting is so probable. The closed form
solution can be applied for verification of other numerical works in this area.
REFERENCES(36)
1.
Afrin N., Zhang Y., Chen J., 2014, Dual-phase lag behavior of a gas-saturated porous-medium heated by a short-pulsed laser, International Journal of Thermal Sciences, 75, 21-27.
Akbarzadeh A., Chen Z., 2012, Transient heat conduction in a functionally graded cylindrical panel based on the dual phase lag theory, International Journal of Thermophysics, 33, 6, 1100-1125.
Atefi G., Talaee M.R., 2011, Non-Fourier temperature field in a solid homogeneous finite hollow cylinder, Archive of Applied Mechanics, 81, 5, 569-583.
Chen T.-C., Liu C.-C., Jang H.-Y., Tuan P.-C., 2007, Inverse estimation of heat flux and temperature in multi-layer gun barrel, International Journal of Heat and Mass Transfer, 50, 11-12, 2060-2068.
Chen T.-C., Liu C.-C., 2008, Inverse estimation of time-varied heat flux and temperature on 2-D gun barrel using input estimation method with finite-element scheme, Defence Science Journal, 58, 1, 57.
Dębski A., Koniorczyk P., Leciejewski Z., Preiskorn M., Surma Z., Zmywaczyk J., 2016, Analysis of heat transfer in a 35 mm barrel of an anti-aircraft cannon, Problemy Mechatroniki. Uzbrojenie, Lotnictwo, Inżynieria Bezpieczeństwa, 7, 3, 71-86.
Ghazanfarian J., Abbassi A., 2009, Effect of boundary phonon scattering on dual-phase-lag model to simulate micro- and nano-scale heat conduction, International Journal of Heat and Mass Transfer, 52, 15-16, 3706-3711.
Ghazanfarian J., Abbassi A., 2012, Investigation of 2D transient heat transfer under the effect of dual-phase-lag model in a nanoscale geometry, International Journal of Thermophysics, 33, 3, 552-566.
Ghazanfarian J., Shomali Z., 2012, Investigation of dual-phase-lag heat conduction model in a nanoscale metal-oxide-semiconductor field-effect transistor, International Journal of Heat and Mass Transfer, 55, 21-22, 6231-6237.
Gheitaghy A., Talaee M., 2013, Solving hyperbolic heat conduction using electrical simulation, Journal of Mechanical Science and Technology, 27, 12, 3885-3891.
Han P., Tang D., Zhou L., 2006, Numerical analysis of two-dimensional lagging thermal behavior under short-pulse-laser heating on surface, International Journal of Engineering Science, 44, 20, 1510-1519.
Lee H.-L., Yang Y.-C., Chang W.-J., Wu T.-S., 2009, Estimation of heat flux and thermal stresses in multilayer gun barrel with thermal contact resistance, Applied Mathematics and Computation, 209, 2, 211-221.
Liu K.-C., Chen H.-T., 2010, Investigation for the dual phase lag behavior of bio-heat transfer, International Journal of Thermal Sciences, 49, 7, 1138-1146.
Mishra A., Hameed A., Lawton B., 2010, A novel scheme for computing gun barrel temperature history and its experimental validation, Journal of Pressure Vessel Technology, 132, 6, 061202.
Mishra S.C., Sahai H., 2012, Analyses of non-Fourier heat conduction in 1-D cylindrical and spherical geometry - an application of the lattice Boltzmann method, International Journal of Heat and Mass Transfer, 55, 23-24, 7015-7023.
Saedodin S., Barforoush M., 2017, An exact solution for thermal analysis of a cylindrical object using hyperbolic thermal conduction model, Thermophysics and Aeromechanics, 24, 6, 909-920.
Seiler F., Mathieu G., Peter H., Zimmermann K., 2003, Experimental and numerical estimation of gun barrel heating for rapid fire, WIT Transactions on Modelling and Simulation, 33.
Talaee M.R., Kabiri A., 2017a, Analytical solution of hyperbolic bioheat equation in spherical coordinates applied in radiofrequency heating, Journal of Mechanics in Medicine and Biology, 17, 4, 1750072.
Talaee M.R., Kabiri A., 2017b, Exact analytical solution of bioheat equation subjected to intensive moving heat source, Journal of Mechanics in Medicine and Biology, 17, 5, 1750081.
Talaee M.R., Kabiri A., Khodarahmi R., 2018, Analytical solution of hyperbolic heat conduction equation in a finite medium under pulsatile heat source, Iranian Journal of Science and Technology, Transactions of Mechanical Engineering, 42, 3, 269-277
Talaee M.R., Sarafrazi V., Bakhshandeh S., 2016, Exact analytical hyperbolic temperature profile in a three-dimensional media under pulse surface heat flux, Journal of Mechanics, 32, 3, 339-347.
Torabi M., Saedodin S., 2011, Analytical and numerical solutions of hyperbolic heat conduction in cylindrical coordinates, Journal of Thermophysics and Heat Transfer, 25, 2, 239-253.
Torabi M., Zhang K., 2014, Multi-dimensional dual-phase-lag heat conduction in cylindrical coordinates: Analytical and numerical solutions, International Journal of Heat and Mass Transfer, 78, 960-966.
Tzou D.Y., 1995, The generalized lagging response in small-scale and high-rate heating, International Journal of Heat and Mass Transfer, 38, 17, 3231-3240.
Wu B., Chen G., Xia W., 2008, Heat transfer in a 155 mm compound gun barrel with full length integral midwall cooling channels, Applied Thermal Engineering, 28, 8-9, 881-888.
We process personal data collected when visiting the website. The function of obtaining information about users and their behavior is carried out by voluntarily entered information in forms and saving cookies in end devices. Data, including cookies, are used to provide services, improve the user experience and to analyze the traffic in accordance with the Privacy policy. Data are also collected and processed by Google Analytics tool (more).
You can change cookies settings in your browser. Restricted use of cookies in the browser configuration may affect some functionalities of the website.