ARTICLE
The effect of graphite flake diameter on the resistance to thermal shock, microstructure and mechanical properties of silicon carbide nanomaterials
 
More details
Hide details
1
Department of Projects, University of Anbar, Iraq
 
2
Mechanical Engineering Department, University of Anbar, Iraq
 
3
Renewable Energy Research Center, University of Anbar, Iraq
 
 
Submission date: 2023-05-04
 
 
Final revision date: 2023-07-14
 
 
Acceptance date: 2023-08-24
 
 
Online publication date: 2023-10-01
 
 
Publication date: 2023-10-30
 
 
Corresponding author
Kafel Azeez   

University Of Anbar. Anbar Iraq, University Of Anbar. Anbar Iraq, 20, 00964, Ramidi, Iraq
 
 
Journal of Theoretical and Applied Mechanics 2023;61(4):783-791
 
KEYWORDS
TOPICS
ABSTRACT
To ascertain the impact of graphite flake diameter on the microstructure and mechani- cal properties as well as resistance to thermal shock, graphite flakes of various diameters have been added to zirconium dibromide (ZrB2) 20 vol.% nano-silicon carbide (SiC) 20 vol.% graphite (ZSnpG) ceramics. The objective of this study is to investigate the effect of graphite flake diameter on silicon carbide nanomaterials. The study aims to identify a strategy for achieving high comprehensive performance of ZrB2-based ceramics incorporating graphite for future research on ultra-high temperature ceramics (UHTCs). The dispersion of mea- surements has been conducted by combining a solid powder with ethanol at various mass fractions. The results demonstrated that, while no changing fracture toughness considerably, the relative density and flexural strength of ZSnpG ceramics initially increased and then de- clined with graphite diameter increasing. The micro-crack length reduction due to residual thermal stress, appearance of silicon carbide nanoparticles within granulation, and manage- ment of graphite distribution all contributed significantly to the improvement of flexural strength ZSnpG ceramics. According to the computed thermal shock parameters, ZSnpG ceramics fracture propagation was constrained by graphite with a larger starting diameter and prevented with a finer starting diameter.
REFERENCES (25)
1.
Calabrese L., Brancato V., Palomba V., Frazzica A., Cabeza L.F., 2019, Magnesium sulphate-silicone foam composites for thermochemical energy storage: Assessment of dehydration behaviour and mechanical stability, Solar Energy Materials and Solar Cells, 200, 109992.
 
2.
Chamberlain A.L., Fahrenholtz W.G., Hilmas G.E., 2006, Low-temperature densification of zirconium diboride ceramics by reactive hot pressing, Journal of the American Ceramic Society, 89, 12, 3638-3645.
 
3.
Gautam G., Mohan A., 2015, Effect of ZrB2 particles on the microstructure and mechanical properties of hybrid (ZrB2+Al3Zr)/AA5052 insitu composites, Journal of Alloys and Compounds, 649, 174-183.
 
4.
Guo S.Q., 2009, Densification of ZrB2-based composites and their mechanical and physical properties: a review, Journal of the European Ceramic Society, 29, 6, 995-1011.
 
5.
Guo S.Q., Yang J.M., Tanaka H., Kagawa Y., 2008, Effect of thermal exposure on strength of ZrB2-based composites with nano-sized SiC particles, Composites Science and Technology, 68, 14, 3033-3040.
 
6.
Guo W.M., Yang Z.G., Vleugels J., Zhang G.J., 2012, Effect of pressure loading cycle on spark plasma sintered ZrB2-SiC-Yb2O3 ceramics, Ceramics International, 38, 6, 5293-5297.
 
7.
Han W., Li G., Zhang X., Han J., 2009, Effect of AlN as sintering aid on hot-pressed ZrB2-SiC ceramic composite, Journal of Alloys and Compounds, 471, 1-2, 488-491.
 
8.
Hou Y., Hu P., Zhang X., Gui K., 2013, Effects of graphite flake diameter on mechanical properties and thermal shock behavior of ZrB2-nanoSiC-graphite ceramics, International Journal of Refractory Metals and Hard Materials, 41, 133-137.
 
9.
Lee J.Y., Nagalingam A.P., Yeo S.H., 2021, A review on the state-of-the-art of surface finishing processes and related ISO/ASTM standards for metal additive manufactured components, Virtual and Physical Prototyping, 16, 1, 68-96.
 
10.
Liu Q., Han W., Han, J., 2010, Influence of SiCnp content on the microstructure and mechanical properties of ZrB2-SiC nanocomposite, Scripta Materialia, 63, 6, 581-584.
 
11.
Liu Q., Han W., Hu P., 2009a, Microstructure and mechanical properties of ZrB2-SiC nanocomposite ceramic, Scripta Materialia, 61, 7, 690-692.
 
12.
Liu Q., Han W., Zhang X., Wang S., Han J., 2009b, Microstructure and mechanical properties of ZrB2-SiC composites, Materials Letters, 63, 15, 1323-1325.
 
13.
Lv Y., Wen G., Lei T.Q., 2006, Tribological behavior of W2B5 particulate reinforced carbon matrix composites, Materials Letters, 60, 4, 541-545.
 
14.
Mishra S.K., Pathak L.C., 2008, Effect of carbon and titanium carbide on sintering behaviour of zirconium diboride, Journal of Alloys and Compounds, 465, 1-2, 547-555.
 
15.
Wang Y., Liang J., Han W., Zhang X., 2009, Mechanical properties and thermal shock behavior of hot-pressed ZrB2-SiC-AlN composites, Journal of Alloys and Compounds, 475, 1-2, 762-765.
 
16.
Wang Z., Wang S., Zhang X., Hu P., Han W., Hong C., 2009, Effect of graphite flake on microstructure as well as mechanical properties and thermal shock resistance of ZrB2-SiC matrix ultrahigh temperature ceramics, Journal of Alloys and Compounds, 484, 1-2,390-394.
 
17.
Wang Z.,, Wu Z., Shi G., 2011, Fabrication, mechanical properties and thermal shock resistance of a ZrB2-graphite ceramic, International Journal of Refractory Metals and Hard Materials, 29, 3, 351-355.
 
18.
Xiang L., Cheng L., Shi L., Yin X., Zhang L., 2015, Mechanical and ablation properties of laminated ZrB2-SiC/BN ceramics, Journal of Alloys and Compounds, 638, 261-266.
 
19.
Xiao K., Guo Q., Liu Z., Zhao S., Zhao, Y., 2014, Influence of fiber coating thickness on microstructure and mechanical properties of carbon fiber-reinforced zirconium diboride based composites, Ceramics International, 40, 1, 1539-1544.
 
20.
Yang F., Zhang X., Han J., Du S., 2008, Mechanical properties of short carbon fiber reinforced ZrB2-SiC ceramic matrix composites, Materials Letters, 62, 17-18, 2925-2927.
 
21.
Yang H., Zhang L., Guo X., Zhu X., Fu X., 2011, Pressureless sintering of silicon carbide ceramics containing zirconium diboride, Ceramics International, 37, 6, 2031-2035.
 
22.
Zamora V., Ortiz A.L., Guiberteau F., Nygren M., 2012, Crystal-size dependence of the spark-plasma-sintering kinetics of ZrB2 ultra-high-temperature ceramics, Journal of the European Ceramic Society, 32, 2, 271-276.
 
23.
Zhang X., Xu L., Du S., Liu C., Han J., Han W., 2008, Spark plasma sintering and hot pressing of ZrB2-SiCW ultra-high temperature ceramics, Journal of Alloys and Compounds, 466, 1-2, 241-245.
 
24.
Zhang X.H., Wang Z., Hu P., Han W.B., Hong C.Q., 2009, Mechanical properties and thermal shock resistance of ZrB2-SiC ceramic toughened with graphite flake and SiC whiskers, Scripta Materialia, 61, 8, 809-812.
 
25.
Zhu S., Fahrenholtz W.G., Hilmas G.E., 2007, Influence of silicon carbide particle size on the microstructure and mechanical properties of zirconium diboride-silicon carbide ceramics, Journal of the European Ceramic Society, 27, 4, 2077-2083.
 
eISSN:2543-6309
ISSN:1429-2955
Journals System - logo
Scroll to top